Troposphere is one of the most limiting sources of error in the accuracy of 15 Precise Point Positioning method. This work aims to analyze the effects of tropospheric 16 delay on this positioning technique by applying the Bernese scientific program to GNSS 17 data belonging to the Brazilian Network for Continuous Monitoring of GNSS Systems. 18 GNSS data are related to several climatic zones, including Amazon region, referring to four 19 seasons. The data were processed considering six strategies, each one using different 20 troposphere models and mapping functions for analysis. Results were evaluated according 21 to the Root Mean Square, estimated for 15 processing days for each season, involving 89 22 GNSS stations. Results show that the greatest effects of the tropospheric delay occurred in 23 the equatorial region, related to the altimetric component, in all seasons of the year. This 24 climatic zone is under a strong influence of the Amazon region, which presents high annual 25 humidity values. In addition, it can occur a great humidity variation in this region, which 26 can compromise the process of estimating wet component of tropospheric delay. Finally, 27 results showed that the best processing strategy was the use of the Vienna mapping function 28 in conjunction with corrections based on the Numerical Weather Forecast model.
O Software Bernese GNSS (BSW) é um conjunto de pacotes de processamento de observáveis GNSS (Global Navigation Satellite System) de alto desempenho, que proporciona estimativas com alta acurácia, e flexibilidade em suas aplicações. Uma destas funcionalidades é a automatização de scripts que realizam o Posicionamento por Ponto Preciso (PPP). O objetivo deste trabalho é analisar as potencialidades do PPP no BSW. Para alcançar esse propósito foram estimadas as coordenadas de 90 estações da RBMC (Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS) no BSW e no serviço IBGE-PPP online, referenciadas a atual realização do International GNSS Service, o IGS14, na época dos dados. As coordenadas estimadas foram comparadas com as coordenadas de referência das estações (SIRGAS2000, época 2000,40), de três formas distintas: 1. Referenciais e épocas incompatíveis; 2. Compatibilização apenas dos referenciais; e 3. Referenciais e épocas compatíveis. As acurácias das coordenadas reduziram no processo de compatibilização de referenciais. Como esperado, o fator predominante na alteração das coordenadas planimétricas se refere à sua evolução temporal. Ademais, as acurácias planimétricas e altimétricas apresentaram estatísticas descritivas similares ao nível do milímetro, evidenciando a potencialidade do BSW no PPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.