Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance.
The optical band-gap energy of a nanostructured tungsten trioxide film is determined using the photoacoustic spectroscopy method under continuous light excitation. The mechanism of the photoacoustic signal generation is discussed. The band-gap energy is also computed by other methods. The absorption coefficient as well as the band-gap energy of three different crystal structures of tungsten trioxide is calculated by a first-principles Green's function approach using the projector augmented wave method. The theoretical study indicates that the cubic crystal structure shows good agreement with the experimental data. © 2010 American Institute of Physics. ͓doi:10.1063/1.3313945͔Tungsten trioxide ͑WO 3 ͒ films have attracted much interest during the last decade due to their potential applications. Nanostructured WO 3 films have been used in eletrochromic ͑EC͒ devices such as displays and smart windows.1-3 For this reason, a detailed understanding of the optical processes responsible for the EC effect would greatly facilitate the optimization of EC devices.4 WO 3 is a wideband-gap semiconductor. Its band-gap energy has been mainly measured by optical absorption, varying from about 2.6 to 3.0 eV. 2,5 The band gap of WO 3 is certainly of interest for both applied and fundamental aspects. The literature is however somewhat confusing. Values below 3.0 eV have mostly been obtained assuming an indirect band gap.Taking into account that the understanding of the optical processes responsible for the EC effect is an important parameter in design and optimization of EC devices, and that the band gap energy is one of the most important parameter of semiconductors, we investigate the optical absorption in the region of the fundamental band edge by the photoacoustic spectroscopy ͑PAS͒ technique. PAS has been extensively used as a nondestructive method for measuring the optical properties of semiconductors and many other materials. 6-10The nonradiative relaxation processes-which are associated with the band structure, defect-related energy loss mechanism, etc.-can be directly and very accurately obtained from the analysis of the PAS spectra. 10The optical band-gap energy ͑E g ͒ has been determined by the PAS technique using mainly two methods. In the first, the E g value is adopted as the absorption edge obtained from a linear fitting in the plot of the square of the product between the absorption coefficient and the photon energy versus the photon energy for direct band gap, or the plot of the square root of the product between the absorption coefficient and the photon energy versus the photon energy for indirect band gap. 11 In the second, E g is estimated by the changing of the derivative near the fundamental absorption edge. 7In this letter, we analyze the PA-signal behavior of a nanostructured WO 3 film under continuous laser excitation, using an experimental procedure similar to that described in Ref. 12. The influence of the continuous excitation in the mechanisms responsible for the generation of the PA signal is discussed ...
Photodynamic therapy (PDT) is a therapeutic modality that has shown effectiveness in the inactivation of cancer cell lines and microorganisms. Treatment consists of activating the photosensitizer (PS) upon light irradiation of adequate wavelength. After reaching the excited state, the PS can handle the intersystem conversion through energy transfer to the molecular oxygen, generating reactive oxygen species. This especially applies to singlet oxygen (O), which is responsible for the selective destruction of the sick tissue. Photosensitizing compounds (chlorophylls and derivatives) existing in the spinach extract have applicability for PDT. This study aimed to develop and characterize the thermoresponsive bioadhesive system composed of Pluronic F127 20.0%- and Carbopol 934P 0.2% (w/w) (FC)-containing chlorophyll-based extract 0.5% (w/w) (FC-Chl). Mechanical and rheological properties, in vitro release, sol-gel transition temperature, and ex vivo permeability of the spinach extract PS components (through pig ear skin) were investigated. Furthermore, photodynamic activity of the system was accessed through uric acid and time-solved measurements. The sol-gel transition temperature obtained for the FC-Chl system was 28.8 ± 0.3 °C. Rheological and texture properties of the platform were suitable for use as a dermatological system, exhibiting easy application and good characteristics of retention in the place of administration. In vitro release studies showed the presence of two distinct mechanisms that reasonably obey the zero-order and first-order kinetics models. PS components presented skin permeability and reached a permeation depth of 830 μm (between the epidermis and dermis). The photodynamic evaluation of the FC-Chl system was effective in the degradation of uric acid. The quantum yield (ΦO) and life time (τO) of singlet oxygen showed similar values for the spinach extract and the isolated chlorophyll a species in ethanol. These results allowed for the classification of the FC-Chl platform as potentially useful for the delivery of the chlorophyll-based extract in the topic PDT, suggesting that it is worthy for in vivo evaluation.
The aim of this study was to investigate the diffusion dynamics of 25% hydrogen peroxide (H2O2) through enamel-dentin layers and to correlate it with dentin's structural alterations. Micro-Raman Spectroscopy (MRS) and Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) were used to measure the spectra of specimens before and during the bleaching procedure. H2O2 was applied to the outer surface of human enamel specimens for 60 minutes. MRS measurements were performed on the inner surface of enamel or on the subsurface dentin. In addition, H2O2 diffusion dynamics from outer enamel to dentin, passing through the dentin-enamel junction (DEJ) was obtained with Raman transverse scans. FTIR-PAS spectra were collected on the outer dentin. MRS findings revealed that H2O2 (O-O stretching µ-Raman band) crossed enamel, had a more marked concentration at DEJ, and accumulated in dentin. FTIR-PAS analysis showed that H2O2 modified dentin's organic compounds, observed by the decrease in amides I, II, and III absorption band intensities. In conclusion, H2O2 penetration was demonstrated to be not merely a physical passage through enamel interprismatic spaces into the dentinal tubules. H2O2 diffusion dynamics presented a concentration gradient determined by the chemical affinity of the H2O2 with each specific dental tissue.
Onychomycosis is a chronic fungal infection of nails, commonly caused by dermatophyte fungi, primarily species of Trichophyton. Because of the limited drug arsenal available to treat general fungal infections and the frequent failure of onychomycosis treatment, the search for new therapeutic sources is essential, and topical treatment with natural products for onychomycosis has been encouraged. Propolis, an adhesive resinous compound produced by honeybees (Apis mellifera), has shown multiple biological properties including significant antifungal and anti-biofilm activities in vitro. In spite of promising in vitro results, in vivo results have not been reported so far. This study assessed an ethanol propolis extract (PE) as a topical therapeutic option for onychomycosis, including its characterization in vitro and its applicability as a treatment for onychomycosis (from bench to clinic). The in vitro evaluation included analysis of the cytotoxicity and the antifungal activity against the planktonic cells and biofilm formed by Trichophyton spp. We also evaluated the capacity of PE to penetrate human nails. Patients with onychomycosis received topical PE treatments, with a 6-month follow-up period. The results of the in vitro assays showed that PE was non-toxic to the cell lines tested, and efficient against both the planktonic cells and the biofilm formed by Trichophyton spp. The results also showed that PE is able to penetrate the human nail. The results for PE applied topically to treat onychomycosis were promising, with complete mycological and clinical cure of onychomycosis in 56.25% of the patients. PE is an inexpensive commercially available option, easy to obtain and monitor. Our results indicated that PE is a promising natural compound for onychomycosis treatment, due to its ability to penetrate the nail without cytotoxicity, and its good antifungal performance against species such as Trichophyton spp. that are resistant to conventional antifungals, both in vitro and in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.