Oligodendrocytes secrete vesicles into the extracellular space, where they might play a role in neuron–glia communication. These exosomes are small vesicles with a diameter of 50–100 nm that are formed within multivesicular bodies and are released after fusion with the plasma membrane. The intracellular pathways that generate exosomes are poorly defined. Because Rab family guanosine triphosphatases (GTPases) together with their regulators are important membrane trafficking organizers, we investigated which Rab GTPase-activating proteins interfere with exosome release. We find that TBC1D10A–C regulate exosome secretion in a catalytic activity–dependent manner. We show that Rab35 is the target of TBC1D10A–C and that the inhibition of Rab35 function leads to intracellular accumulation of endosomal vesicles and impairs exosome secretion. Rab35 localizes to the surface of oligodendroglia in a GTP-dependent manner, where it increases the density of vesicles, suggesting a function in docking or tethering. These findings provide a basis for understanding the biogenesis and function of exosomes in the central nervous system.
NEM prevents mitotic reassembly of Golgi cisternae into stacked structures. The major target of NEM is a 65 kDa protein conserved from yeast to mammals. Antibodies to this protein and a recombinant form of it block cisternal stacking in a cell-free system, justifying its designation as a Golgi ReAssembly Stacking Protein (GRASP65). One of the two minor targets of NEM is GM130, previously implicated in the docking of transport vesicles and mitotic fragmentation of the Golgi stack. GRASP65 is complexed with GM130 and is tightly bound to Golgi membranes, even under mitotic conditions when both are heavily phosphorylated. These results link vesicle docking, stacking of Golgi cisternae, and the disruption of both of these interactions during mitosis.
Cytokinesis is the process by which cells physically separate after the duplication and spatial segregation of the genetic material. A number of general principles apply to this process. First the microtubule cytoskeleton plays an important role in the choice and positioning of the division site. Once the site is chosen, the local assembly of the actomyosin contractile ring remodels the plasma membrane. Finally, membrane trafficking to and membrane fusion at the division site cause the physical separation of the daughter cells, a process termed abscission. Here we will discuss recent advances in our understanding of the mechanisms of cytokinesis in animals, yeast, and plants.
The noncatalytic RabGAP protein TBC1D14 regulates the Rab11- and ULK1-positive recycling endosomes required for autophagosome formation upon starvation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.