The electroreduction of CO2 is one of the most investigated reactions and involves testing a large number and variety of catalysts. The majority of experimental electrocatalysis studies use conventional one-sample-at-a-time methods without providing spatially resolved catalytic activity information. Herein, we present the application of scanning electrochemical microscopy (SECM) for simultaneous screening of different catalysts forming an array. We demonstrate the potential of this method for electrocatalytic assessment of an array consisting of three Sn/SnOx catalysts for CO2 reduction to formate (CO2RF). Simultaneous SECM scans with fast scan (1 V s−1) cyclic voltammetry detection of products (HCOO−, CO and H2) at the Pt ultramicroelectrode tip were performed. We were able to consistently distinguish the electrocatalytic activities of the three compositionally and morphologically different Sn/SnOx catalysts. Further development of this technique for larger catalyst arrays and matrices coupled with machine learning based algorithms could greatly accelerate the CO2 electroreduction catalyst discovery.
Orientational ordering within nanoscale (70−8 nm) thickness fluorinated ionomer films on Si substrates was investigated through the use of attenuated total reflection Fourier transform infrared (ATR−FTIR) spectroscopy in conjunction with electromagnetic field calculations. A spectral model was developed for Nafion thin films across the 1400−950 cm −1 region from frequency-dependent, isotropic optical constants derived from Kramers−Kronig analysis of ionomer transmission infrared spectra. The model considered infrared light propagation within the parallel boundary regions between the Ge ATR crystal, the ionomer film, and the Si substrate supporting the film. The calculations reproduced overall polymer thickness-dependent changes in peak frequencies and band shapes observed in experimental spectra recorded with p-and s-polarized light. General trends were traceable to effects of anomalous dispersion and electric field enhancement within the nanoscale gap separating the Ge and Si phases. However, optical effects could not fully explain perturbations in spectra of the thinnest films, where molecular orientational ordering is expected to be strongest. Strategies for gleaning further molecular structural detail from vibrational spectra of ultrathin (<50 nm) ionomer films are discussed.
Shape and size controlled nanostructures are critical for nanotechnology and have versatile applications in understanding interfacial phenomena of various multi-phase systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.