In this paper, we propose models for non-life loss reserving combining traditionalapproaches such as Mack’s or generalized linear models and gradient boosting algorithm in anindividual framework. These claim-level models use information about each of the payments madefor each of the claims in the portfolio, as well as characteristics of the insured. We provide an examplebased on a detailed dataset from a property and casualty insurance company. We contrast sometraditional aggregate techniques, at the portfolio-level, with our individual-level approach and wediscuss some points related to practical applications.
Usage‐based insurance is becoming the new standard in vehicle insurance; it is therefore relevant to find efficient ways of using insureds' driving data. Applying anomaly detection (AD) to vehicles' trip summaries, we develop a method allowing to derive a “routine” and a “peculiarity” anomaly profile for each vehicle. To this end, AD algorithms are used to compute a routine and a peculiarity anomaly score for each trip a vehicle makes. The former measures the anomaly degree of the trip compared with the other trips made by the concerned vehicle, while the latter measures its anomaly degree compared with trips made by any vehicle. The resulting anomaly scores vectors are used as routine and peculiarity profiles. Features are then extracted from these profiles, for which we investigate the predictive power in the claim classification framework. Using real data, we find that features extracted from the vehicles' peculiarity profile improve the classification.
It has been shown several times in the literature that telematics data collected in motor insurance help to better understand an insured's driving risk. Insurers that use this data reap several benefits, such as a better estimate of the pure premium, more segmented pricing and less adverse selection. The flip side of the coin is that collected telematics information is often sensitive and can therefore compromise policyholders' privacy. Moreover, due to their large volume, this type of data is costly to store and hard to manipulate. These factors, combined with the fact that insurance regulators tend to issue more and more recommendations regarding the collection and use of telematics data, make it important for an insurer to determine the right amount of telematics information to collect. In addition to traditional contract information such as the age and gender of the insured, we have access to a telematics dataset where information is summarized by trip. We first derive several features of interest from these trip summaries before building a claim classification model using both traditional and telematics features. By comparing a few classification algorithms, we find that logistic regression with lasso penalty is the most suitable for our problem. Using this model, we develop a method to determine how much information about policyholders' driving should be kept by an insurer. Using real data from a North American insurance company, we find that telematics data become redundant after about 3 months or 4,000 kilometers of observation, at least from a claim classification perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.