Over evolutionary time bacteriophages have developed unique proteins that arrest critical cellular processes to commit bacterial host metabolism to phage reproduction. Here, we apply this concept of phage-mediated bacterial growth inhibition to antibiotic discovery. We sequenced 26 Staphylococcus aureus phages and identified 31 novel polypeptide families that inhibited growth upon expression in S. aureus. The cellular targets for some of these polypeptides were identified and several were shown to be essential components of the host DNA replication and transcription machineries. The interaction between a prototypic pair, ORF104 of phage 77 and DnaI, the putative helicase loader of S. aureus, was then used to screen for small molecule inhibitors. Several compounds were subsequently found to inhibit both bacterial growth and DNA synthesis. Our results suggest that mimicking the growth-inhibitory effect of phage polypeptides by a chemical compound, coupled with the plethora of phages on earth, will yield new antibiotics to combat infectious diseases.
A standardized serum bactericidal assay (SBA) is required to evaluate the functional activity of antibody produced in response to Neisseria meningitidis serogroup A and C vaccines. We evaluated assay parameters (assay buffer, target strains, growth of target cells, target cell number, complement source and concentration, and methods for growth of surviving bacteria) which may affect the reproducibility of SBA titers. The various assay parameters and specificity of anticapsular antibody to five serogroup A strains (A1, ATCC 13077, F8238, F9205, and F7485) and four serogroup C strains (C11, G7880, G8050, and 1002-90) were evaluated with Centers for Disease Control and Prevention meningococcal quality control sera. The critical assay parameters for the reproducible measurement of SBA titers were found to include the target strain, assay incubation time, and complement. The resulting standardized SBA was used by 10 laboratories to measure functional anticapsular antibody against serogroup A strain F8238 and serogroup C strain C11. In the multilaboratory study, SBA titers were measured in duplicate for 14 pairs of sera (seven adults and seven children) before and after immunization with a quadrivalent polysaccharide (A, C, Y, and W-135) vaccine. The standardized SBA was reliable in all laboratories regardless of experience in performing SBAs. For most sera, intralaboratory reproducibility was ؎1 dilution; interlaboratory reproducibility was ؎2 dilutions. The correlation between median titers (interlaboratory) and enzyme-linked immunosorbent assay total antibody concentrations was high for both serogroup A (r ؍ 0.86; P < 0.001; slope ؍ 0.5) and serogroup C (n ؍ 0.86; P < 0.001; slope ؍ 0.7). The specified assay, which includes the critical parameters of target strain, incubation time, and complement source, will facilitate interlaboratory comparisons of the functional antibody produced in response to current or developing serogroup A and C meningococcal vaccines.
Slow-growing bacteria and biofilms are notoriously tolerant to antibiotics. Oritavancin is a lipoglycopeptide with multiple mechanisms of action that contribute to its bactericidal action against exponentially growing gram-positive pathogens, including the inhibition of cell wall synthesis and perturbation of membrane barrier function. We sought to determine whether oritavancin could eradicate cells known to be tolerant to many antimicrobial agents, that is, stationary-phase and biofilm cultures of Staphylococcus aureus in vitro. Oritavancin exhibited concentration-dependent bactericidal activity against stationaryphase inocula of methicillin-susceptible S. aureus (MSSA) ATCC 29213, methicillin-resistant S. aureus (MRSA) ATCC 33591, and vancomycin-resistant S. aureus (VRSA) VRS5 inoculated into nutrient-depleted cation-adjusted Mueller-Hinton broth. As has been described for exponential-phase cells, oritavancin induced membrane depolarization, increased membrane permeability, and caused ultrastructural defects including a loss of nascent septal cross walls in stationary-phase MSSA. Furthermore, oritavancin sterilized biofilms of MSSA, MRSA, and VRSA at minimal biofilm eradication concentrations (MBECs) of between 0.5 and 8 g/ml. Importantly, MBECs for oritavancin were within 1 doubling dilution of their respective planktonic broth MICs, highlighting the potency of oritavancin against biofilms. These results demonstrate a significant activity of oritavancin against S. aureus in phases of growth that exhibit tolerance to other antimicrobial agents.
Oritavancin displayed concentration-dependent killing of MSSA, MRSA, VRSA, VISA, VSE and VRE. Oritavancin was more rapidly bactericidal against all strains tested than were vancomycin, teicoplanin, linezolid or daptomycin at physiologically relevant concentrations. These data support the conclusion that oritavancin exerts concentration-dependent bactericidal activity on recent, drug-resistant isolates of S. aureus and enterococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.