This paper extends underwater SONAR simulation from laboratory prototype to real-world demonstrator. It presents the interdisciplinary methodology to advance the state of the art from level four to level seven on the technology readiness level (TRL) standard scale for measuring the maturity of innovations. While SONAR simulation offers the potential to unlock cost-effective personnel capacity building in hydrography, demonstration of virtualised survey-scale operations is a prerequisite for validation by practitioners. Our research approach uses the TRL framework to identify and map current barriers to the use of simulation to interdisciplinary solutions adapted from multiple domains. To meet the distinct challenges of acceptance tests at each level in the TRL scale, critical knowledge is incorporated from different branches of science, engineering, project management, and pedagogy. The paper reports the simulator development at each escalation of TRL. The contributions to simulator performance and usability at each level of advancement are presented, culminating in the first case study demonstration of SONAR simulation as a real-world hydrographic training platform.
Vessel groundings pose a major risk for maritime safety, constituting 20 percent of all incidents in the last decade. Frequent dredging and bottom mapping are resource intensive solutions currently employed, but these services cannot be maintained with the necessary frequency in all critical areas. While ships are carrying echo sounders to acquire precise and current under keel clearance data, it does not allow the vessel to react to possible deviations from the map data. Within the RoboVaaS project, a service is designed, implemented and tested in simulation. This service consists of one or more small MASS travelling ahead of a merchant vessel, collecting bathymetric data with enough lead time for the merchant vessel to react to possible threats, e.g. by course correction. This service is tested in compliance with the IMO HCD guideline in a quick approach and safe environment using a ship handling simulator. The simulator is augmented by a display system based on an ECDIS map and displaying the bathymetric data in three different scenarios. These scenarios are tested with nautical officers to collect feedback for service design and implementation with trained personnel and show the effectiveness of the chosen human machine interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.