Skin-derived dendritic cells (DCs) play a crucial role in the maintenance of immune homeostasis due to their role in antigen trafficking from the skin to the draining lymph nodes (dLNs). To quantify the spatiotemporal regulation of skin-derived DCs in vivo, we generated knock-in mice expressing the photoconvertible fluorescent protein KikGR. By exposing the skin or dLN of these mice to violet light, we were able to label and track the migration and turnover of endogenous skin-derived DCs. Langerhans cells and CD103+DCs, including Langerin+CD103+dermal DCs (DDCs), remained in the dLN for 4–4.5 days after migration from the skin, while CD103−DDCs persisted for only two days. Application of a skin irritant (chemical stress) induced a transient >10-fold increase in CD103−DDC migration from the skin to the dLN. Tape stripping (mechanical injury) induced a long-lasting four-fold increase in CD103−DDC migration to the dLN and accelerated the trafficking of exogenous protein antigens by these cells. Both stresses increased the turnover of CD103−DDCs within the dLN, causing these cells to die within one day of arrival. Therefore, CD103−DDCs act as sentinels against skin invasion that respond with increased cellular migration and antigen trafficking from the skin to the dLNs.
Organ fibrosis is a pathological condition associated with chronic inflammatory diseases. In fibrosis, excessive deposition of extracellular matrix (ECM) severely impairs tissue architecture and function, eventually resulting in organ failure. This process is mediated primarily by the induction of myofibroblasts, which produce large amounts of collagen I, the main component of the ECM. Accordingly, the origin, developmental pathways, and mechanisms of myofibroblast regulation are attracting increasing attention as potential therapeutic targets. The fibrotic cascade, from initial epithelial damage to eventual myofibroblast induction, is mediated by complex biological processes such as macrophage infiltration, a shift from Th1 to Th2 phenotype, and by inflammatory mediators such as transforming growth factor-β. Here, we review the current understanding of the cellular and molecular mechanisms underlying organ fibrosis.
Significance Solid tumors contain large numbers of immune cells, including monocytes and monocyte-derived macrophages that promote tumor progression. During tumor development, monocytes accumulate in the spleen. However, the influence of spleen cells on tumor growth remains controversial. Here, we used novel methods for tracking intertissue migration and monitoring hematopoiesis to show that during tumor development the bone marrow dramatically accelerates production of monocytes, rapidly transferring many of these newly formed cells to a reservoir in the spleen. However, these spleen monocytes are less able than their bone marrow counterparts to enter the tumor and make only a minor contribution to the tumor-infiltrating monocyte population. These findings clarify the roles of the spleen and bone marrow in cancer development.
Depletion of CD4þ cells in tumor-bearing mice has strong antitumor effects. However, the mechanisms underlying these effects and the therapeutic benefits of CD4 þ cell depletion relative to other immunotherapies have not been fully evaluated. Here, we investigated the antitumor effects of an anti-CD4-depleting mAb as a monotherapy or in combination with immune checkpoint mAbs. In B16F10, Colon 26, or Lewis lung carcinoma subcutaneous tumor models, administration of the anti-CD4 mAb alone had strong antitumor effects that were superior to those elicited by CD25 þ Treg depletion or other immune checkpoint mAbs, and which were completely reversed by CD8 þ cell depletion. CD4 þ cell depletion led to the proliferation of tumor-specific CD8 þ T cells in the draining lymph node and increased infiltration of PD-1into the tumor, with a shift toward type I immunity within the tumor. Combination treatment with the anti-CD4 mAb and immune checkpoint mAbs, particularly anti-PD-1 or anti-PD-L1 mAbs, synergistically suppressed tumor growth and greatly prolonged survival. To our knowledge, this work represents the first report of robust synergy between anti-CD4 and anti-PD-1 or anti-PD-L1 mAb therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.