In this paper, a method based on the inherent event-based sampling capability of the laser optical feedback interferometry (OFI) is proposed to recover sub-λ/2 displacement with a nanometric precision. The proposed method operates in open-loop configuration and relies on OFI's fringe detection, thereby improving its robustness and ease of use. The measured white noise power spectral density is less than 100 pm/ √ Hz with a corner noise frequency of approximately 80 Hz for a laser diode emitting wavelength λ0 of 785 nm placed at 30 cm of the target.
Measurement and 3D imaging of acoustic waves through the acousto-optic effect has recently been demonstrated by means of Optical Feedback Interferometry (OFI). In this paper we study experimentally the lower limits of detection of an acoustic wave using an OFI sensor. We show that the OFI sensor exhibits a linear response to acoustic power variations, and we obtain a lower limit of detection of 83 dB rms for a planar acoustic wave at 3 kHz. We also determine the equivalent displacement, that is seen by the OFI sensor at this pressure level, to be 96 pm. A deeper understanding of the limits of the technology and the quantification of the acousto-optic effect shall help improve the applications already created for the measurement of acoustic pressure waves using OFI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.