The East African hominin Paranthropus boisei was characterized by a suite of craniodental features that have been widely interpreted as adaptations to a diet that consisted of hard objects that required powerful peak masticatory loads. These morphological adaptations represent the culmination of an evolutionary trend that began in earlier taxa such as Australopithecus afarensis, and presumably facilitated utilization of open habitats in the Plio-Pleistocene. Here, we use stable isotopes to show that P. boisei had a diet that was dominated by C 4 biomass such as grasses or sedges. Its diet included more C 4 biomass than any other hominin studied to date, including its congener Paranthropus robustus from South Africa. These results, coupled with recent evidence from dental microwear, may indicate that the remarkable craniodental morphology of this taxon represents an adaptation for processing large quantities of low-quality vegetation rather than hard objects.C4 photosynthesis | C3 photosynthesis T he East African hominin Paranthropus boisei possessed large and low-cusped postcanine dentition, large and thick mandibular corpora, and powerful muscles of mastication, which are generally believed to be adaptations for a diet of nuts, seeds, and hard fruit (1-3). This notion emerged from interpretations of P. boisei's morphology, but gained indirect support from dental microwear studies of its congener, Paranthropus robustus; these concluded that wear on the molars of South African Paranthropus was consistent with its having ingested and chewed small, hard food items, if not as primary resources, then at least as fallback foods (4-6). Although some have suggested that the craniodental morphology of P. boisei is consistent with the consumption of tough rather than hard foods (7,8), this idea has been largely eschewed by most workers. Thus, when a recent study using dental microwear texture analysis revealed no evidence for the consumption of hard foods by P. boisei (9), it challenged decades of received wisdom, and underscored the need for independent lines of paleodietary evidence.Stable carbon isotope analysis has proven a powerful tool for testing hypotheses about the diets of extinct herbivorous mammals (10, 11). It is based on the idea that carbon isotope compositions vary predictably between plant foods [e.g., plants using the C 3 photosynthetic pathway (most dicotyledonous plants including trees, shrubs, forbs, herbs) and those using the C 4 pathway (predominantly tropical grasses and sedges, which are monocotyledonous plants)], and further that dietary carbon remains locked in tooth enamel even after millions of years (10). Carbon isotope studies of P. robustus from South Africa indicated that it consumed some plants using C 4 photosynthesis such as tropical grasses or sedges, but were also consistent with most of its dietary carbon (approximately 70%) having been derived from the C 3 food items favored by extant chimpanzees (Pan troglodytes) such as tree fruits (12, 13). In contrast, stable isotopes measuremen...
A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1–2.35 Ma in the Turkana Basin had a greater diversity of C3–C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3–C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.
Specialized pastoralism developed ∼3 kya among Pastoral Neolithic Elmenteitan herders in eastern Africa. During this time, a mosaic of hunters and herders using diverse economic strategies flourished in southern Kenya. It has been argued that the risk for trypanosomiasis (sleeping sickness), carried by tsetse flies in bushy environments, had a significant influence on pastoral diversification and migration out of eastern Africa toward southern Africa ∼2 kya. Elmenteitan levels at Gogo Falls (ca. 1.9–1.6 kya) preserve a unique faunal record, including wild mammalian herbivores, domestic cattle and caprines, fish, and birds. It has been suggested that a bushy/woodland habitat that harbored tsetse fly constrained production of domestic herds and resulted in subsistence diversification. Stable isotope analysis of herbivore tooth enamel (n = 86) from this site reveals, instead, extensive C4 grazing by both domesticates and the majority of wild herbivores. Integrated with other ecological proxies (pollen and leaf wax biomarkers), these data imply an abundance of C4 grasses in the Lake Victoria basin at this time, and thus little risk for tsetse-related barriers to specialized pastoralism. These data provide empirical evidence for the existence of a grassy corridor through which small groups of herders could have passed to reach southern Africa.
The Hominoidea (apes and, eventually, humans) and Cercopithecoidea (Old World monkeys) diverged from a common ancestor during the late Oligocene (∼25 Ma) in East Africa. Subsequently, both catarrhine groups diversified in the early Miocene (∼23-16 Ma), making this time period an extremely important one for understanding our (deep) ancestral roots and the link between our hominoid ancestors and the environment. A remote region of west Turkana known as Loperot provides an exciting opportunity to study early Miocene primate paleoecology and has the potential to reveal the phylogenetic relationship between cercopithecoid monkeys and stem hominoids. The site of LpM4 is particularly fossiliferous and has produced a diverse fauna that includes several catarrhine fossils that await description. Radioisotopic dating indicates that the Loperot fauna are older than ∼17 Ma (early Miocene). Using geochemical data from paleosols and stable isotope values from rhizolith calcite, coupled with detailed sedimentology and stratigraphy, we reconstruct the early Miocene Critical Zone of Loperot to reveal a large perennial river system fed by ephemeral streams that created localized riparian forest microhabitats within a larger open ecosystem under semi-arid climate conditions, making Loperot's environmental reconstruction unlike many other early Miocene catarrhine-bearing localities. The perennial river system supported corridors of C 3 forests; however, because these forests were restricted, they could not support a high diversity of forest indicator taxa. This is the most comprehensive analysis of the environmental conditions at Loperot to date, and provides new empirical evidence to suggest that African climate varied significantly by region and that arid habitats certainly existed during the early Miocene.
We describe two new osteolaemine crocodylids from the Early and early Middle Miocene of Kenya: Kinyang mabokoensis tax. nov. (Maboko, 15 Ma) and Kinyang tchernovi tax. nov. (Karungu and Loperot, 18 Ma). Additional material referable to Kinyang is known from Chianda and Moruorot. The skull was broad and dorsoventrally deep, and the genus can be diagnosed based on the combined presence of a partial overbite, a subdivided fossa for the lateral collateral ligament on the surangular, and a maxilla with no more than 13 alveoli. Phylogenetic analyses based on morphological and combined morphological and molecular data support a referral of Kinyang to Osteolaeminae, and morphological data alone put the new taxon at the base of Euthecodontini. Some Kinyang maxillae preserve blind pits on the medial caviconchal recess wall. Kinyang co‐occurs with the osteolaemine Brochuchus at some localities, and together, they reinforce the phylogenetic disparity between early Neogene osteolaemine‐dominated faunas and faunas dominated by crocodylines beginning in the Late Miocene in the Kenya Rift. The causes of this turnover remain unclear, though changes in prevailing vegetation resulting from tectonic and climatic drivers may provide a partial explanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.