The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G؉C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G؉C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B 12 biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.
The strategies used by bacterial pathogens to establish and maintain themselves in the host represent one of the fundamental aspects of microbial pathogenesis. Characterization of these strategies and the underlying molecular machinery offers new opportunities both to our understanding of how organisms cause disease in susceptible individuals and to the development of novel therapeutic measures designed to undermine or interfere with these determinants of successful survival. With respect to the microbial aetiology of the periodontal diseases, a growing body of evidence suggests that the proteolytic enzymes of Porphyromonas gingivalis represent key survival and, by extrapolation, virulence determinants of this periodontal bacterium. This in turn has led to international efforts to characterize these enzymes at the gene and protein level. Approximately 20 protease genes of P. gingivalis with different names and accession numbers have been deposited in the gene databases and a correspondingly heterogeneous nomenclature system is employed for the products of these genes in the literature. However, it is evident, through comparison of these gene sequences and through gene inactivation studies, that the genetic structure of the proteases of this organism, particularly those with specificity for arginyl and lysyl peptide bonds, is less complicated than originally thought. The major extracellular and surface associated arginine specific protease activity is encoded by 2 genes which we recommend be designated rgpA and rgpB (arg-gingipains A & B). Similarly we recommend that the gene encoding the major lysine specific protease activity is designated kgp (lys-gingipain). These three genes, which account for all the extracellular/surface arginine and lysine protease activity in P. gingivalis, belong to a family of sequence-related proteases and haemagglutinins.
In a previous study we cloned and determined the nucleotide sequence of the prtH gene from Porphyromonas gingivalis W83. This gene specifies a 97-kDa protease which is normally found in the membrane vesicles produced by P. gingivalis and which cleaves the C3 complement protein under defined conditions. We developed a novel ermF-ermAM antibiotic resistance gene cassette, which was used with the cloned prtH gene to prepare an insertionally inactivated allele of this gene. This genetic construct was introduced by electroporation into P. gingivalis W83 in order to create a protease-deficient mutant by recombinational allelic exchange. The mutant strain, designated V2296, was compared with the parent strain W83 for proteolytic activity and virulence. Extracellular protein preparations from V2296 showed decreased proteolytic activity compared with preparations from W83. Casein substrate zymography revealed that the 97-kDa proteolytic component as well as a 45-kDa protease was missing in the mutant. In in vivo experiments using a mouse model, V2296 was dramatically reduced in virulence compared with the wild-type W83 strain. A molecular survey of several clinical isolates of P. gingivalis using the prtH gene as a probe suggested that prtH gene sequences were conserved and that they may have been present in multiple copies. Two of 10 isolates did not hybridize with the prtH gene probe. These strains, like the V2296 mutant, also displayed decreased virulence in the mouse model. Taken together, these results suggest an important role for P. gingivalis proteases in soft tissue infections and specifically indicate that the prtH gene product is a virulence factor.
A plasmid that is able to replicate in both Escherichia coli and Streptococcus sanguis has been constructed by the in vitro joining of the pACYC184 (Cmr Tcr) and pVA749 (Emr) replicons. This plasmid, designated pVA838, is 9.2 kb in size and expresses Emr in both E. coli and S. sanguis. Its Cmr marker is expressed only in E. coli and may be inactivated by addition of DNA inserts at its internal EcoRI or PvuII sites. The pVA838 molecule also contains unique SalI, SphI, BamHI, NruI and XbaI cleavage sites suitable for molecular cloning. pVA838 may be amplified in E. coli but not in S. sanguis. We have used the pVA838 plasmid as a shuttle vector to clone streptococcal plasmid fragments in E. coli. Such chimeras isolated from E. coli were readily introduced into S. sanguis by transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.