This revision of the IC3D classification includes an updated anatomic classification of corneal dystrophies more accurately classifying TGFBI dystrophies that affect multiple layers rather than are confined to one corneal layer. Typical histopathologic and confocal images have been added to the corneal dystrophy templates.
Retinoblastoma is a rare cancer of the infant retina, which forms when both RB1 alleles mutate in a susceptible retinal cell, likely a cone photoreceptor precursor. Loss of the tumour suppressor functions of the retinoblastoma protein, pRB, leads to uncontrolled cell division and recurrent genomic changes during tumour progression. Although pRB is expressed in virtually all tissues, cone precursors have biochemical and molecular features that may sensitize to RB1 loss to enable tumourigenesis. Retinoblastoma is diagnosed in ~8,000 children each year worldwide. Patient survival is >95% in high-income countries, but <30% globally. However, outcomes are improving through increasing awareness for earlier diagnosis, new guidelines and sharing of expertise. Intra-arterial and intravitreal chemotherapy have emerged as promising methods to salvage eyes. Ongoing international collaborations will replace the multiple different classifications of eye involvement with standardized definitions to consistently assess eligibility, efficacy and safety of treatment options. Life-long follow-up is warranted since survivors of heritable retinoblastoma are at risk for developing second cancers. Defining the molecular consequences of RB1 loss in diverse tissues may open new avenues for treatment and prevention of retinoblastoma as well as second cancers in patients with germline RB1 mutations.
This study reports the first clinically documented case series of patients with retinoblastoma treated with IViC. Despite a possible confounding effect of concomitant chemotherapy prescription using other routes of administration in four of the successfully treated eyes (20%), IViC achieved an unprecedented success rate of tumour control in the presence of vitreous seeding. Of note, none of the treated eyes required external beam irradiation to control the vitreous seeding. Further studies are required to assess IViC retinal toxicity and to better delineate its role in the management of retinoblastoma.
Malattia Leventinese (ML) and Doyne honeycomb retinal dystrophy (DHRD) refer to two autosomal dominant diseases characterized by yellow-white deposits known as drusen that accumulate beneath the retinal pigment epithelium (RPE). Both loci were mapped to chromosome 2p16-21 (refs 5,6) and this genetic interval has been subsequently narrowed. The importance of these diseases is due in large part to their close phenotypic similarity to age-related macular degeneration (AMD), a disorder with a strong genetic component that accounts for approximately 50% of registered blindness in the Western world. Just as in ML and DHRD, the early hallmark of AMD is the presence of drusen. Here we use a combination of positional and candidate gene methods to identify a single non-conservative mutation (Arg345Trp) in the gene EFEMP1 (for EGF-containing fibrillin-like extracellular matrix protein 1) in all families studied. This change was not present in 477 control individuals or in 494 patients with age-related macular degeneration. Identification of this mutation may aid in the development of an animal model for drusen, as well as in the identification of other genes involved in human macular degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.