Energy system optimization models (ESOMs) are widely used to generate insight that informs energy and environmental policy. Using ESOMs to produce policy-relevant insight requires significant modeler judgement, yet little formal guidance exists on how to conduct analysis with ESOMs. To address this shortcoming, we draw on our collective modelling experience and conduct an extensive literature review to formalize best practice for energy system optimization modelling. We begin by articulating a set of overarching principles that can be used to guide ESOM-based analysis. To help operationalize the guiding principles, we outline and explain critical steps in the modeling process, including how to formulate research questions, set spatiotemporal boundaries, consider appropriate model features, conduct and refine the analysis, quantify uncertainty, and communicate insights. We highlight the need to develop and refine formal guidance on ESOM application, which comes at a critical time as ESOMs are being used to inform national climate targets.
Object detection is considered one of the most challenging problems in this field of computer vision, as it involves the combination of object classification and object localization within a scene. Recently, deep neural networks (DNNs) have been demonstrated to achieve superior object detection performance compared to other approaches, with YOLOv2 (an improved You Only Look Once model) being one of the state-of-the-art in DNN-based object detection methods in terms of both speed and accuracy. Although YOLOv2 can achieve real-time performance on a powerful GPU, it still remains very challenging for leveraging this approach for real-time object detection in video on embedded computing devices with limited computational power and limited memory. In this paper, we propose a new framework called Fast YOLO, a fast You Only Look Once framework which accelerates YOLOv2 to be able to perform object detection in video on embedded devices in a realtime manner. First, we leverage the evolutionary deep intelligence framework to evolve the YOLOv2 network architecture and produce an optimized architecture (referred to as O-YOLOv2 here) that has 2.8X fewer parameters with just a ∼2% IOU drop. To further reduce power consumption on embedded devices while maintaining performance, a motion-adaptive inference method is introduced into the proposed Fast YOLO framework to reduce the frequency of deep inference with O-YOLOv2 based on temporal motion characteristics. Experimental results show that the proposed Fast YOLO framework can reduce the number of deep inferences by an average of 38.13%, and an average speedup of ∼3.3X for objection detection in video compared to the original YOLOv2, leading Fast YOLO to run an average of ∼18FPS on a Nvidia Jetson TX1 embedded system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.