ABSTRACT:Weather and climate extremes such as droughts and floods have far reaching impacts in Kenya. They have had implications in a variety of sectors including agriculture, water resources, health, energy, and disaster management among others. Lake Victoria and its catchment support millions of people and any impact on its ability to support the livelihoods of the communities in this region is of major concern. Thus, the main objective of this study was to assess the potential future climatic changes on the Nzoia catchment in the Lake Victoria basin, and how they might affect streamflow. The Soil and Water Assessment Tool was used to investigate the impact of climatic change on streamflow of the study area. The model was set up using readily available spatial and temporal data, and calibrated against measured daily streamflow. Climate change scenarios were obtained from general circulation models.Results obtained showed increased amounts of annual rainfall for all the scenarios but with variations on a monthly basis. All -but one -global circulation models (GCMs) showed consistency in the monthly rainfall amounts. Rainfall was higher in the 2050s than in the 2020s. According to climate change scenarios, temperature will increase in this region, with the 2050s experiencing much higher increases than the 2020s with a monthly temperature change range of 0-1.7°C. The range of change in mean annual rainfall of 2.4-23.2% corresponded to a change in streamflow of about 6-115%. The analysis revealed important rainfall-runoff linear relationships for certain months that could be extrapolated to estimate amounts of streamflow under various scenarios of change in rainfall. Streamflow response was not sensitive to changes in temperature. If all other variables, e.g. land cover, population growth etc., were held constant, a significant increase in streamflow may be expected in the coming decades as a consequence of increased rainfall amounts.
A critical discussion of recent studies that analysed the effects of climate change on the water resources of the River Nile Basin (RNB) is presented. First, current water-related issues on the RNB showing the particular vulnerability to environmental changes of this large territory are described. Second, observed trends in hydrological data (such as temperature, precipitation, river discharge) as described in the recent literature are presented. Third, recent modelling exercises to quantify the effects of climate changes on the RNB are critically analysed. The many sources of uncertainty affecting the entire modelling chain, including climate modelling, spatial and temporal downscaling, hydrological modelling and impact assessment are also discussed. In particular, two contrasting issues are discussed: the need to better recognize and characterize the uncertainty of climate change impacts on the hydrology of the RNB, and the necessity to effectively support decision-makers and propose suitable adaptation strategies and measures. The principles of a code of good practice in climate change impact studies based on the explicit handling of various sources of uncertainty are outlined. Hydrologie et climat futurs dans le bassin du Nil: une revueRésumé Une discussion critique des études récentes qui ont analysé les effets du changement climatique sur les ressources en eau du bassin du Nil (RNB) est présentée. Premièrement, les problèmes actuels liés à l'eau dans le RNB montrant la vulnérabilité particulière de ce vaste territoire aux changements environnementaux sont décrits. Deuxièmement, les tendances observées dans les données hydrologiques (comme la température, les précipitations, le débit des rivières) sont présentées, telles qu'elles sont décrites dans la littérature récente. Troisièmement, les exercices récents de modélisation quantitative des effets des changements climatiques dans le RNB sont analysés de manière critique. Les nombreuses sources d'incertitude qui affectent toute la chaîne de modélisation, incluant la modélisation du climat, la descente d'échelles spatiale et temporelle, la modélisation hydrologique, et l'évaluation des impacts sont également discutées. En particulier, deux questions contrastées sont discutées: la nécessité de mieux identifier et caractériser l'incertitude des impacts du changement climatique sur l'hydrologie du RNB, et la nécessité de soutenir efficacement les décideurs et de proposer des stratégies d'adaptation et des mesures appropriées. Les principes d'un code de bonnes pratiques dans les études d'impact du changement climatique sont décrits, qui reposent sur le traitement explicite des diverses sources d'incertitude.
For a long time now, the hydrologist has been faced with the problem of finding which of the many possible probability distribution functions can be used most effectively in flood frequency analyses. This problem has been mainly due to the insufficiency of the conventional goodness-of-fit procedures when used with the typically skewed flood probability distributions. In this study, the Akaike Information Criterion (AIC) goodness-of-fit test is used to identify more objectively the optimum model for flood frequency analysis in Kenya from a class of competing models. The class is comprised of (a) seven three-parameter density functions, namely, log-normal, Pearson, log-Pearson, FisherTippet, log-Fisher-Tippet, Walter Boughton and log-Walter Boughton; and (b) two five-parameter density functions, namely, Wakeby and log-Wakeby. The AIC is also used in this study as a method of testing for the existence of outlier peak-flow values in the peak annual data used. A modified version of the chi-square goodness-of-fit test is also used, but only for the sake of comparison with the AIC. Utilisation du Critère d'Information d'Akaike pour identifier un modèle optimal de fréquence de cruesRésumé II y a bien longtemps que les hydrologues sont confrontés dans l'analyse de la fréquence des crues au problème du choix, parmi les nombreuses fonctions proposées dans la littérature, de la fonction de distribution la plus appropriée. Ce problème est essentiellement dû aux insuffisances des procédures habituelles d'appréciation de la qualité d'un ajustement lorsqu'elles sont utilisées pour des distributions dissymétriques comme le sont systématiquement celles des crues. Dans cette étude le Critère d'Information d'Akaike (CIA) a été utilisé pour identifier objectivement le modèle optimum d'analyse des fréquences de crues au Kenya parmi un ensemble de fonctions densité de probabilité concurrentes, à savoir sept fonctions à trois paramètres (log-normale, Pearson, logPearson, Fisher-Tippet, log-Fisher-Tippet, Walter Boughton et log-Walter Boughton) et deux fonctions à cinq paramètres (Wakeby, log-Wakeby). Le CIA a aussi été utilisé dans cette étude pour détecter l'existence de valeurs exceptionnelles (outliers) parmi les valeurs annuelles maximales utilisées. Une version modifiée du test d'ajustement du chi-2 a également été utilisée mais uniquement dans le but d'une comparaison avec le CIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.