Metastatic castration-resistant prostate cancer (mCRPC) accounts for a high percentage of prostate cancer mortality. The proprietary compound galeterone (gal) was designed to inhibit proliferation of androgen/androgen receptor (AR)-dependent prostate cancer cell in vitro and in vivo and is currently in phase III clinical development. Additionally, clinical studies with gal revealed its superb efficacy in four different cohorts of patients with mCRPC, including those expressing splice variant AR-V7. Preclinical studies with gal show that it also exhibits strong anti-proliferative activities against AR-negative prostate cancer cells and tumors through a mechanism involving phosphorylation of eIF2α, which forms an integral component of the eukaryotic mRNA translation complex. Thus, we hypothesized that gal and its new analog, VNPT55, could modulate oncogenic mRNA translation and prostate cancer cell migration and invasion. We report that gal and VNPT55 profoundly inhibit migration and invasion of prostate cancer cells, possibly by downregulating protein expression of several EMT markers (Snail, Slug, N-Cadherin, Vimentin and MMP-2/-9) via antagonizing the Mnk-eIF4E axis. In addition, gal/VNPT55 inhibited both NF-κB and Twist1 transcriptional activities, downregulating Snail and BMI-1 mRNA expression, respectively. Furthermore, profound up-regulation of E-cadherin mRNA and protein expression may explain the observed significant inhibition of prostate cancer cell migration and invasion. Moreover, expression of self-renewal proteins, β-Catenin, CD44 and Nanog, were markedly depleted. Analysis of gal/VNPT55-treated CWR22Rv1 xenograft tissue sections also revealed that observations in vitro were recapitulated in vivo. Our results suggest that gal/VNPT55 could become promising agents for the prevention or treatment of all stages of prostate cancer.
Fifteen cinnoline analogues and six benzimidazole phosphodiesterase 10A (PDE10A) inhibitors were synthesized as potential PET radiopharmaceuticals and their in vitro activity as PDE10A inhibitors was determined. Nine out of twenty-one compounds were potent inhibitors of PDE10A with IC50 values ranging from 1.5 to 18.6 nM. Notably, the IC50 values of compounds 26a, 26b, and 33c were 1.52 ± 0.18, 2.86 ± 0.10, and 3.73 ± 0.60 nM, respectively; these three compounds also showed high in vitro selectivity (> 1,000-fold) for PDE10A over PDE 3A/3B, PDE4A/4B. The high potency and selectivity of these three compounds suggests that they could be radiolabeled with PET radionuclides for further evaluation of their in vivo pharmacological behavior and ability to quantify PDE10A in the brain.
These studies compared the efficacies of our clinical agent galeterone (Gal) and the FDA-approved prostate cancer drug, enzalutamide (ENZ) with two lead next generation galeterone analogs (NGGAs), VNPP414 and VNPP433-3β, using prostate cancer (PC) in vitro and in vivo models. Antitumor activities of orally administered agents were also assessed in CWR22Rv1 tumor-bearing mice. We demonstrated that Gal and NGGAs degraded AR/AR-V7 and Mnk1/2; blocked cell cycle progression and proliferation of human PC cells; induced apoptosis; inhibited cell migration, invasion, and putative stem cell markers; and reversed the expression of epithelial-to-mesenchymal transition (EMT). In addition, Gal/NGGAs (alone or in combination) also inhibited the growth of ENZ-, docetaxel-, and mitoxantrone-resistant human PC cell lines. The NGGAs exhibited improved pharmacokinetic profiles over Gal in mice. Importantly, in vivo testing showed that VNPP433-3β (at 7.53-fold lower equimolar dose than Gal) markedly suppressed (84% vs. Gal, 47%; p < 0.01) the growth of castration-resistant PC (CRPC) CWR22Rv1 xenograft tumors, with no apparent host toxicity. ENZ was ineffective in this CRPC xenograft model. In summary, our findings show that targeting AR/AR-V7 and Mnk1/2 for degradation represents an effective therapeutic strategy for PC/CRPC treatment and supports further development of VNPP433-3β towards clinical investigation.
AEOL 10150 is a catalytic metalloporphyrin superoxide dismutase mimic being developed as a medical countermeasure for radiation-induced lung injury (RILI). The efficacy of AEOL 10150 against RILI through a reduction of oxidative stress, hypoxia and pro-apoptotic signals has been previously reported. The goal of this study was to determine the most effective dose of AEOL 10150 (daily subcutaneous injections, day 1–28) in improving 180-day survival in CBA/J mice after whole-thorax lung irradiation (WTLI) to a dose of 14.6 Gy. Functional and histopathological assessments were performed as secondary end points. Estimated 180-day survival improved from 10% in WTLI alone to 40% with WTLI-AEOL 10150 at 25 mg/kg (P = 0.065) and to 30% at 40 mg/kg (P = 0.023). No significant improvement was seen at doses of 5 and 10 mg/kg or at doses between 25 and 40 mg/kg. AEOL 10150 treatment at 25 mg/kg lowered the respiratory function parameter of enhanced pause (Penh) significantly, especially at week 16 and 18 (P = 0.044 and P = 0.025, respectively) compared to vehicle and other doses. Pulmonary edema/congestion were also significantly reduced at the time of necropsy among mice treated with 25 and 40 mg/kg AEOL 10150 compared to WTLI alone (P < 0.02). In conclusion, treatment with AEOL 10150 at a dose of 25 mg/kg/day for a total of 28 days starting 24 h after WTLI in CBA/J mice was found to be the optimal dose with improvement in survival and lung function. Future studies will be required to determine the optimal duration and therapeutic window for drug delivery at this dose.
Survival rate for pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is poor, with about 80% of patients presenting with the metastatic disease. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC has limited efficacy, attributed to innate/acquired resistance and activation of pro-survival pathways. The Mnk1/2-eIF4E and NF-κB signaling pathways are implicated in PDAC disease progression/metastasis and also associated with gemcitabine-induced resistance in PDAC. Galeterone (gal), a multi-target, agent in phase III clinical development for prostate cancer has also shown effects on the aforementioned pathways. We show for the first time, that gal/analogs (VNPT55, VNPP414 and VNPP433-3β) profoundly inhibited cell viability of gemcitabine-naive/resistance PDAC cell lines and strongly synergized with gemcitabine in gemcitabine-resistant PDAC cells. In addition, to inducing G1 cell cycle arrest, gal/analogs induced caspase 3-mediated cell-death of PDAC cells. Gal/analogs caused profound downregulation of Mnk1/2, peIF4E and NF-κB (p-p65), metastatic inducing factors (N-cadherin, MMP-1/-2/-9, Slug, Snail and CXCR4) and putative stem cell factors, (β-Catenin, Nanog, BMI-1 and Oct-4). Gal/analog also depleted EZH2 and upregulated E-Cadherin. These effects resulted in significant inhibition of PDAC cell migration, invasion and proliferation. Importantly, we also observed strong MiaPaca-2 tumor xenograft growth inhibition (61% to 92%). Collectively, these promising findings strongly support further development of gal/analogs as novel therapeutics for PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.