While radon in soil gases has been identified for decades as a potential precursor of volcanic eruptions, there has been a recent interest for monitoring radon in air on active volcanoes. We present here the first network of outdoor air radon sensors that was installed successfully on Mt. Etna volcano, Sicily, Italy in September 2019. Small radon sensors designed for workers and home dosimetry were tropicalized in order to be operated continuously in harsh volcanic conditions with an autonomy of several months. Two stations have been installed on the south flank of the volcano at ~3000 m of elevation. A private network has been deployed in order to transfer the measurements from the stations directly to a server located in France, using a low-power wide-area transmission technology from Internet of Things (IoT) called LoRaWAN. Data finally feed a data lake, allowing flexibility in data management and sharing. A first analysis of the radon datasets confirms previous observations, while adding temporal information never accessed before. The observed performances confirm IoT solutions are very adapted to active volcano monitoring in terms of range, autonomy, and data loss.
This article presents a platform for environmental data named “Environmental Cloud for the Benefit of Agriculture” (CEBA). The CEBA should fill the gap of a regional institutional platform to share, search, store and visualize heterogeneous scientific data related to the environment and agricultural researches. One of the main features of this tool is its ease of use and the accessibility of all types of data. To answer the question of data description, a scientific consensus has been established around the qualification of data with at least the information “when” (time), “where” (geographical coordinates) and “what” (metadata). The development of an on-premise solution using the data lake concept to provide a cloud service for end-users with institutional authentication and for open data access has been completed. Compared to other platforms, CEBA fully supports the management of geographic coordinates at every stage of data management. A comprehensive JavaScript Objet Notation (JSON) architecture has been designed, among other things, to facilitate multi-stage data enrichment. Data from the wireless network are queried and accessed in near real-time, using a distributed JSON-based search engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.