In this work, a phenomenological model for thermoplastic polymers involving several mechanisms is proposed. The constitutive equations lie within the framework of thermodynamics and account for both viscoelasticty, viscoplasticity and ductile damage. An implicit numerical scheme utilizing the "return mapping algorithm" is provided along with the formulation of the tangent operator. The parameters of the developed model are experimentally identified through a gradient-based inverse method using three strain-controlled configurations. The model validation is achieved by comparing numerical results with experimental data obtained on a cyclic loading configuration test.Finally, the capabilities of the proposed model are demonstrated with a series of numerical simulations where complex cyclic and non-proportional loading conditions are applied as well as with a structural FE application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.