The mechanisms involved in ethinyl estradiol-induced cholestasis are controversial. Basal bile flow was reduced by ethinyl estradiol administration, with a half time (t1/2) of 12.5 +/- 0.6 h. In contrast, initial taurocholate uptake was not significantly reduced until 3 days to 59% of control and to 13 and 10% of control at 5 and 7 days, respectively. The t1/2 was 4.3 +/- 0.1 days. These physiological changes were correlated with measurement of protein mass and steady-state mRNA for Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase), Na(+)-dependent taurocholate transporter, organic anion transporters, and membrane lipid fluidity. Ethinyl estradiol significantly decreased Na(+)-K(+)-ATPase activity and membrane fluidity. However, neither Na(+)-K(+)-ATPase alpha-subunit nor beta-subunit mass was altered by ethinyl estradiol administration. In contrast, protein content of the Na(+)-dependent taurocholate transporter was significantly reduced to 21% of control (P < 0.001) at 5 days. The Na(+)-dependent taurocholate transporter was identified in sinusoidal membrane fractions as a doublet with a molecular size estimated to be 51 and 56 kDa. Although both bands were reduced with ethinyl estradiol treatment, the 56-kDa band was decreased more rapidly and to a greater extent than the 51-kDa band. The estimated t1/2 of 4.8 +/- 0.6 days for the doublet was similar to that for Na(+)-dependent taurocholate uptake. The organic anion transporter protein mass was similarly reduced with time of ethinyl estradiol administration to 21% of control (P < 0.01) at 5 days. Ethinyl estradiol also rapidly decreased the steady-state mRNA levels of Na(+)-dependent and organic anion transporters to approximately 50% and 15% of control at 5 days, respectively. These studies indicate early generalized abnormalities of the sinusoidal membrane lipid fluidity, Na(+)-K(+)-ATPase activity, and bile acid transport protein content.
In the recent years new avenues have been opened in the treatment of ICP, a complex disorder that seems to represent a maladaptation of some young and otherwise healthy women, to estrogens or other sex hormones. New drugs have been shown capable of providing promising therapeutic effects either on pruritus, the main distressing symptoms of cholestasis (such as epomediol, silymarin) or both on pruritus and some biochemical abnormalities (such as UDCA). Future clinical and experimental studies should provide better insight into the pathogenesis of cholestasis, the mechanisms of bile formation and secretion, and the metabolism of estrogens and other sex hormones and their alteration relationship to cholestasis, a disorder that is highly prevalent in humans.
Activation of cellular kinases and transcription factors mediates the early phase of the cellular response to chemically or biologically induced stress. In the present study we investigated the oxidant/antioxidant balance in Huh-7 cells expressing the HCV (hepatitis C virus) subgenomic replicon, and observed a 5-fold increase in oxidative stress during HCV replication. We used MnSOD (manganese-superoxide dismutase) as an indicator of the cellular antioxidant response, and found that its activity, protein levels and promoter activity were significantly increased, whereas Cu/ZnSOD was not affected. The oxidative stress-induced protein kinases p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase) were activated in the HCV repliconcontaining cells and in Huh-7 cells transduced with Ad-NS5A [a recombinant adenovirus encoding NS5A (non-structural protein 5A)], coupled with a 4-5-fold increase in AP-1 (activator protein-1) DNA binding. Ava.1 cells, which encode a replication-defective HCV replicon, showed no significant changes in MnSOD, p38 MAPK or JNK activity. The AP-1 inhibitors dithiothreitol and N -acetylcysteine, as well as a dominant negative AP-1 mutant, significantly reduced AP-1 activation, demonstrating that this activation is oxidative stress-related. Exogenous NS5A had no effect on AP-1 activation in vitro, suggesting that NS5A acts at the upstream targets of AP-1 involving p38 MAPK and JNK signalling cascades. AP-1-dependent gene expression was increased in HCV subgenomic replicon-expressing Huh-7 cells. MnSOD activation was blocked by inhibitors of JNK (JNKI1) and p38 MAPK (SB203580), but not by an ERK (extracellular-signal-regulated kinase) inhibitor (U0126), in HCV-replicating and Ad-NS5A-transduced cells. Our results demonstrate that cellular responses to oxidative stress in HCV subgenomic replicon-expressing and Ad-NS5A-transduced cells are regulated by two distinct signalling pathways involving p38 MAPK and JNK via AP-1 that is linked to increased oxidative stress and therefore to an increased antioxidant MnSOD response.
A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+,K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.