The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.
EGR1 is a member of the immediate early response transcription factor family and functions in cell growth, development, and stress responses in many tissues. Here we report an additional role for EGR1 in regulating homeostasis of hematopoietic stem cells (HSCs). HSCs normally express Egr1 at high levels, but dramatically downregulate its expression when induced to divide and migrate. Consistent with this finding, mice lacking Egr1 exhibit significant increases in steady-state levels of dividing HSCs in the bone marrow (BM), and a striking spontaneous mobilization of HSCs into the peripheral blood. These data identify EGR1 as a transcriptional regulator of stem cell migration that normally functions to promote HSC quiescence and retention in the niche. The ability of this single factor to regulate both proliferation and mobilization of HSCs suggests that EGR1 commands a genetic program that coordinates stem cell division and migration to maintain appropriate HSC number and function.
Ageing in multicellular organisms typically involves a progressive decline in cell replacement and repair processes, resulting in several physiological deficiencies, including inefficient muscle repair, reduced bone mass, and dysregulation of blood formation (haematopoiesis). Although defects in tissue-resident stem cells clearly contribute to these phenotypes, it is unclear to what extent they reflect stem cell intrinsic alterations or age-related changes in the stem cell supportive microenvironment, or niche. Here, using complementary in vivo and in vitro heterochronic models, we show that age-associated changes in stem cell supportive niche cells deregulate normal haematopoiesis by causing haematopoietic stem cell dysfunction. Furthermore, we find that age-dependent defects in niche cells are systemically regulated and can be reversed by exposure to a young circulation or by neutralization of the conserved longevity regulator, insulin-like growth factor-1, in the marrow microenvironment. Together, these results show a new and critical role for local and systemic factors in signalling age-related haematopoietic decline, and highlight a new model in which blood-borne factors in aged animals act through local niche cells to induce age-dependent disruption of stem cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.