A mathematical model describing the dynamics of Corona virus disease 2019 (COVID-19) is constructed and studied. The model assessed the role of denial on the spread of the pandemic in the world. Dynamic stability analyzes show that the equilibria, disease-free equilibrium (DFE) and endemic equilibrium point (EEP) of the model are globally asymptotically stable for
and
, respectively. Again, the model is shown via numerical simulations to possess the backward bifurcation, where a stable DFE co-exists with one or more stable endemic equilibria when the control reproduction number,
is less than unity and the rate of denial of COVID-19 is above its upper bound. We then apply the optimal control strategy for controlling the spread of the disease using the controllable variables such as COVID-19 prevention, hospitalization and maximum treatment efforts. Using the Pontryagin maximum principle, we derive analytically the optimal controls of the model. The aforementioned control strategies are performed numerically in the presence of denial and without denial rate. Among such experiments, results without denial have shown to be more productive in ending the pandemic than others where the denial of the disease invalidates the effectiveness of the controls causing the disease to continue ravaging the globe.
Marriage is the living together of two persons as husband and wife. Separation and Divorce are the frontier challenges facing the existence of stable family system. In this paper, we construct an epidemiological model of divorce epidemic using standard incidence function as force of marital disunity. The study examines qualitatively that the two equilibra (divorce-free and endemic equilibrium point) are globally stable by Lyapunov functions. Numerical results reveal that, anti-divorce protocols and reconciliation can jointly stabilize marriages, and Married cases that survive divorce epidemic in 30 years period of marriage (twice the survival period of separation) cannot break again.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.