This study reconstructs and interprets the changing range of Atlas cedar in northern Morocco over the last 9,000 years. A synthesis of fossil pollen records indicated that Atlas cedars occupied a wider range at lower elevations during the mid-Holocene than today. The mid-Holocene geographical expansion reflected low winter temperatures and higher water availability over the whole range of the Rif Mountains relative to modern conditions. A trend of increasing aridity observed after 6,000 years BP progressively reduced the range of Atlas cedar and prompted its migration toward elevations above 1,400 masl. To assess the impact of climate change on cedar populations over the last decades, we performed a transient model simulation for the period between 1960 and 2010. Our simulation showed that the range of Atlas cedar decreased by about 75% over the last 50 years and that the eastern populations of the range in the Rif Mountains were even more threatened by the overall lack of water availability than the western ones. Today, Atlas cedar populations in the Rif Mountains are persisting in restricted and isolated areas (Jbel Kelti, Talassemtane, Jbel Tiziren, Oursane, Tidighine) that we consider to be modern microrefugia. Conservation of these isolated populations is essential for the future survival of the species, preserving polymorphisms and the potential for population recovery under different climatic conditions.
The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.
Fifty-eight modern pollen surface samples from different Scots pine forest communities (Pinus sylvestris var. iberica Svoboda) in the Iberian Central System (central Spain) were palynologically and statistically analyzed (using hierarchical cluster analysis and principal component analysis) to derive correlations between pollen assemblages and environmental gradients at the sampled points. Numerical classification and ordination were performed on pollen data to assess similarities among (central Iberian)-Scots pine forest phytosociological associations. The results show a strong relationship between altitude, temperature, rainfall, arboreal cover and variations in pollen taxa percentages. The statistic discrimination of some of these forest communities has allowed us to propose three new associations.
Precipitation is a key climate parameter of vegetation and ecosystems in the Iberian Peninsula. Here, we use a regional pollen–climate calibration model and fossil pollen data from eight sites from the Atlantic coast to southern Spain to provide quantitative reconstructions of annual precipitation trends and excursions and their regional patterns for the last 11 700 years. The Early Holocene (11 700 to 11 000 cal. a BP) was characterized by high precipitation values followed by a slowly declining trend until about 9000 cal. a BP in the south and about 8000 cal. a BP in the north. From 8000 to 6000 cal. a BP the reconstructed precipitation values are the highest in most records, especially in those located in the Mediterranean climatic region in the southern part of the peninsula, with maximum values nearly 100% higher than the modern reconstructed values. The results suggest a declining precipitation during the Late Holocene in the south, with a positive excursion at around 2500 cal. a BP, while in the north precipitation remained high until 500 cal. a BP. However, the Late Holocene climate reconstructions in the Iberian Peninsula are biased by intensifying human impact on vegetation. The statistical time series analyses using SiZer technique do not indicate any statistically significant high‐frequency drought events in the region. In general, our results suggest regional differences in the precipitation patterns between the northern and southern parts of the peninsula, with a more distinct Middle Holocene period of high humidity in the south.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.