The isolation of nanocellulose from different agricultural residues is becoming an important research field due to its versatile applications. This work collects different production processes, including conditioning steps, pretreatments, bleaching processes and finally purification for the production of nanocellulose in its main types of morphologies: cellulose nanofiber (CNF) and cellulose nanocrystal (CNC). This review highlights the importance of agricultural wastes in the production of nanocellulose in order to reduce environmental impact, use of fossil resources, guarantee sustainable economic growth and close the circle of resource use. Finally, the possible applications of the nanocellulose obtained as a new source of raw material in various industrial fields are discussed.
A two-step chemical process was carried out on olive pruning residues according to an optimised sequence that led to the isolation of natural fibre with a high cellulose content. Reaction time, temperature and HNO3 concentration in the acid hydrolysis stage were optimised by means of the Response Surface Methodology to achieve the highest removal of hemicellulose and lignin and the highest crystallinity index, minimising cellulose hydrolysis. Subsequent hydrolysis with NaOH allowed to obtain a pulp enriched in cellulose (83.28 wt.%). Analysis revealed that the cellulose isolated had a high crystallinity index (70.06%) and thermal stability ( T max = 357°C). The cellulose obtained was finally used for the manufacture of polymer biocomposites and to evaluate its viability as a filler for polymeric materials. The selected polymer matrix used was polylactic acid (PLA) and the amount of filler was 5 and 15% by weight, respectively. In general, the fibres did not improve the mechanical properties of PLA, and maintained unchanged its melting temperature. Microscopic analysis revealed that PLA/fibre adhesion was stronger for treated fibres. Contradictorily, the composites with untreated fibres presented slightly higher thermal stability. Water uptake increased with the concentration of fibres, being higher in those materials with untreated fibre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.