Genetic overexpression of protein deacetylase Sir2 increases longevity in a variety of lower organisms, and this has prompted interest in the effects of its closest mammalian homologue, Sirt1, on ageing and cancer. We have generated transgenic mice moderately overexpressing Sirt1 under its own regulatory elements (Sirt1-tg). Old Sirt1-tg mice present lower levels of DNA damage, decreased expression of the ageing-associated gene p16 Ink4a , a better general health and fewer spontaneous carcinomas and sarcomas. These effects, however, were not suffi ciently potent to affect longevity. To further extend these observations, we developed a metabolic syndrome-associated liver cancer model in which wild-type mice develop multiple carcinomas. Sirt1-tg mice show a reduced susceptibility to liver cancer and exhibit improved hepatic protection from both DNA damage and metabolic damage. Together, these results provide direct proof of the anti-ageing activity of Sirt1 in mammals and of its tumour suppression activity in ageing-and metabolic syndrome-associated cancer.
The progressive accumulation of DNA damage is thought to be one of the driving forces that initiates ageing. However, the nature of the damage that arises endogenously is still ill-defined. A known source of endogenous damage is replicative stress (RS), which is intrinsically associated to DNA replication and prevented mainly by the ATR kinase. Here, we have developed a murine model of the human Seckel Syndrome characterized by a severe deficiency in ATR. Seckel mice suffer high levels of RS during embryogenesis when proliferation is widespread, but which decrease to marginal levels in postnatal life. In spite of this decrease, adult Seckel mice present accelerated ageing, which is further aggravated in the absence of p53 due to a further increase of RS. Together, these results support the concept that endogenous RS, particularly in utero, contributes to the onset of ageing in postnatal life and this is counterbalanced by the RS-limiting role of the checkpoint proteins ATR and p53.
We have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues. More importantly, targeting Cdk4 alleles in advanced tumors detectable by computed tomography scanning also induces senescence and prevents tumor progression. These observations suggest that robust and selective pharmacological inhibition of Cdk4 may provide therapeutic benefit for NSCLC patients carrying K-RAS oncogenes.
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.