The progressive accumulation of DNA damage is thought to be one of the driving forces that initiates ageing. However, the nature of the damage that arises endogenously is still ill-defined. A known source of endogenous damage is replicative stress (RS), which is intrinsically associated to DNA replication and prevented mainly by the ATR kinase. Here, we have developed a murine model of the human Seckel Syndrome characterized by a severe deficiency in ATR. Seckel mice suffer high levels of RS during embryogenesis when proliferation is widespread, but which decrease to marginal levels in postnatal life. In spite of this decrease, adult Seckel mice present accelerated ageing, which is further aggravated in the absence of p53 due to a further increase of RS. Together, these results support the concept that endogenous RS, particularly in utero, contributes to the onset of ageing in postnatal life and this is counterbalanced by the RS-limiting role of the checkpoint proteins ATR and p53.
Oncogene-induced replicative stress activates an Atr- and Chk1-dependent response, which has been proposed to be widespread in tumors. We explored whether the presence of replicative stress could be exploited for the selective elimination of cancer cells. To this end, we evaluated the impact of targeting the replicative stress-response on cancer development. In mice (Mus musculus), the reduced levels of Atr found on a mouse model of the Atr-Seckel syndrome completely prevented the development of Myc-induced lymphomas or pancreatic tumors, both of which showed abundant levels of replicative stress. Moreover, Chk1 inhibitors were highly effective in killing Myc-driven lymphomas. By contrast, pancreatic adenocarcinomas initiated by K-Ras(G12V) showed no detectable evidence of replicative stress and were nonresponsive to this therapy. Besides its impact on cancer, Myc overexpression aggravated the phenotypes of Atr-Seckel mice, revealing that oncogenes can modulate the severity of replicative stress-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.