Cyclooxygenase-2 (COX-2) has been identified in renal tissues under normal conditions, with its expression enhanced during sodium restriction. To evaluate the role of COX-2-derived metabolites in the regulation of renal function, we infused a selective inhibitor (nimesulide) in anesthetized dogs with normal or low sodium intake. The renal effects elicited by nimesulide and a non-isozyme-specific inhibitor (meclofenamate) were compared during normal sodium intake. In ex vivo assays, meclofenamate, but not nimesulide, prevented the platelet aggregation elicited by arachidonic acid. During normal sodium intake, nimesulide infusion (n=6) had no effects on arterial pressure or renal hemodynamics but did reduce urinary sodium excretion, urine flow rate, and fractional lithium excretion. In contrast, nimesulide administration increased arterial pressure and decreased renal blood flow, urine flow rate, and fractional lithium excretion during low sodium intake (n=6). COX-2 inhibition reduced urinary prostaglandin E(2) excretion in both groups but did not modify plasma renin activity in dogs with low (8.1+/-1.1 ng angiotensin I. mL(-1). h(-1)) or normal (1.8+/-0.4 ng angiotensin I. mL(-1). h(-1)) sodium intake. Meclofenamate infusion in dogs with normal sodium intake (n=8) induced a greater renal hemodynamic effect than nimesulide infusion. These results suggest that COX-2-derived metabolites (1) are involved in the regulation of sodium excretion in dogs with normal sodium intake, (2) play an important role in the regulation of renal hemodynamic and excretory function in dogs with low sodium intake, and (3) are not involved in the maintenance of the high renin levels during a long-term decrease in sodium intake.
Abstract-The effects of dynamic exercise on restenosis after vascular injury are still unknown. The consequences of balloon dilation-induced injury on neointimal hyperplasia, vascular negative remodeling, and reendothelialization were assessed in sedentary and trained rats. Ex vivo eNOS vascular expression and activity were investigated in carotid arteries isolated from sedentary and exercised rats. The in vivo effects of eNOS inhibition by L-NMMA on vessel wall after balloon dilation were evaluated in sedentary and exercised rats. We also investigated the effects of exercise on neointimal formation in a rat stent model of vascular injury. Compared with sedentary group, the arteries isolated from trained rats showed higher levels of eNOS protein expression and activity 7 days after balloon dilation. A significant reduction of both neointimal hyperplasia and negative remodeling was observed 14 days after balloon injury in trained compared with sedentary rats. Moreover, we demonstrated that exercise training produced accelerated reendothelialization of the balloon injured arterial segments compared with sedentary. L-NMMA administration eliminated the benefits of physical training on vessel wall after balloon dilation. Finally, a decrease of neointimal hyperplasia as well as of platelet aggregation was observed after stent deployment in trained rats compared with sedentary. In conclusion, physical exercise could favorably affect restenosis after balloon angioplasty and stenting. Increase in eNOS expression and activity might contribute to the potential beneficial effects of exercise on the vessel wall after vascular injury. Key Words: exercise Ⅲ restenosis Ⅲ balloon angioplasty Ⅲ stent Ⅲ nitric oxide synthase R estenosis is still an unresolved issue of percutaneous coronary interventions (PCI), 1 although rapamycineeluting stents recently show considerable promise for restenosis prevention. 2 Restenosis after balloon angioplasty is primarily due to negative vascular remodeling and only partially to vascular smooth muscle cell (VSMC) proliferation. 3 On the other hand, whereas stent deployment abolished inward vascular remodeling, in-stent restenosis (ISR) is determined by VSMC proliferation generating neointimal formation. 3 The molecular pathways underlying VSMC migration and proliferation after balloon angioplasty and stenting are well known. [3][4][5][6] However, the reasons for negative remodeling after balloon angioplasty are still unclear.Endothelial damage after PCI has been associated with vascular remodeling. In fact, after balloon angioplasty and stent deployment, the vessel is almost totally endotheliumdenuded. 7,8 NO, synthesized by endothelial nitric oxide synthase (eNOS), is a key molecule preventing the detrimental consequences of arterial injury on the vascular wall 9,10 ; indeed, NO inhibits VSMC migration and proliferation, platelet adhesion to the vessel wall, and stimulates endothelial cell migration and reorganization. 9,10 All these actions lead to the inhibition of both vascular negative remo...
We studied the effects of the heme oxygenase (HO) inhibitor stannous mesoporphyrin (SnMP; 40 micromol/kg i.v.) on renal hemodynamics in anesthetized rats with and without 48-h pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis. SnMP decreased renal blood flow (RBF) and increased renal vascular resistance (RVR) in both groups. The SnMP-induced reduction of RBF in L-NAME-pretreated rats was more prominent than in rats without pretreatment (43 +/- 7 vs. 13 +/- 3%) as was the SnMP-induced elevation of RVR (87 +/- 31 vs. 14 +/- 5%). The renal vasoconstrictor effect of SnMP is linked, in part, to amplification of prevailing neurohormonal constrictor mechanisms, since in L-NAME-pretreated rats it was prevented by concurrent administration of prazosin or losartan. However, SnMP (15 micromol/l) also elicits vasoconstriction in isolated, pressurized renal interlobular arteries and the response is more intense in vessels obtained from L-NAME-pretreated rats than from rats without pretreatment. These data indicate that the status of NO synthesis conditions the vascular response to HO inhibition in the rat kidney.
The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.