This paper presents a systematic review of the perception systems and simulators for autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception systems are categorized as environment perception systems and positioning estimation systems. The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the quantification of their features using spider charts will allow proper selection of different sensors depending on 11 features. In the second part, the main elements to be taken into account in the simulation of a perception system of an AV are presented. For this purpose, the paper describes simulators for model-based development, the main game engines that can be used for simulation, simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current state of regulations that are being applied in different countries around the world on issues concerning the implementation of autonomous vehicles is presented.
The complex decision-making systems used for autonomous vehicles or advanced driver-assistance systems (ADAS) are being replaced by end-to-end (e2e) architectures based on deep-neural-networks (DNN). DNNs can learn complex driving actions from datasets containing thousands of images and data obtained from the vehicle perception system. This work presents the classification, design and implementation of six e2e architectures capable of generating the driving actions of speed and steering wheel angle directly on the vehicle control elements. The work details the design stages and optimization process of the convolutional networks to develop six e2e architectures. In the metric analysis the architectures have been tested with different data sources from the vehicle, such as images, XYZ accelerations and XYZ angular speeds. The best results were obtained with a mixed data e2e architecture that used front images from the vehicle and angular speeds to predict the speed and steering wheel angle with a mean error of 1.06%. An exhaustive optimization process of the convolutional blocks has demonstrated that it is possible to design lightweight e2e architectures with high performance more suitable for the final implementation in autonomous driving.
a b s t r a c tThis article presents an integrated framework for the development of home automation systems following the model-driven approach. By executing model transformations the environment allows developers to generate executable code for specific platforms. The tools presented in this work help developers to model home automation systems by means of a domain specific language which is later transformed into code for home automation specific platforms. These transformations have been defined by means of graph grammars and template engines extended with traceability capabilities. Our framework also allows the models to be reused for different applications since a catalogue of requirements is provided. This framework enables the development of home automation applications with techniques for improving the quality of both the process and the models obtained. In order to evaluate the benefits of the approach, we conducted a survey among developers that used the framework. The analysis of the outcome of this survey shows which conditions should be fulfilled in order to increase reusability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.