Background: Analysis of locomotion is often used as a measure for impairment and recovery following experimental peripheral nerve injury. Compared to rodents, sheep offer several attractive features as an experimental model for studying peripheral nerve regeneration. There are no studies on locomotion outcomes after peripheral nerve injury and repair in the sheep model. In the present study, we performed and compared two-dimensional (2D) and, for the first time, three-dimensional (3D) hindlimb kinematics during obstacle avoidance in the ovine model. This study aimed to obtain kinematic data to serve as a template for an objective assessment of the ankle joint motion in future studies of common peroneal nerve (CP) injury and repair in the ovine model. Results: The strategy used by the sheep to bring the hindlimb over a moderately high obstacle, set to 10% of its hindlimb length, was the pronounced knee, ankle and metatarsophalangeal flexion when approaching and clearing the obstacle. Despite the overall time course kinematic patterns about the hip, knee, ankle, and metatarsophalangeal were identical, we found significant differences between values of the 2D and 3D joint angular motion. Conclusions: Our results show that the most apparent changes that occurred during the gait cycle were for the ankle and metatarsophalangeal joints, whereas the hip and knee joints were much less affected. Data and techniques described here are likely to be useful for an objective assessment of altered gait after CP injury and repair in an ovine model.
Analysis of locomotion is often used as a measure for impairment and recovery following experimental peripheral nerve injury. Compared to rodents, sheep offer several advantages for studying peripheral nerve regeneration. In the present study, we compared for the first time, two-dimensional (2D) and three-dimensional (3D) hindlimb kinematics during obstacle avoidance in the ovine model. This study obtained kinematic data to serve as a template for an objective assessment of the ankle joint motion in future studies of common peroneal nerve (CP) injury and repair in the ovine model. The strategy used by the sheep to bring the hindlimb over a moderately high obstacle, set to 10% of its hindlimb length, was pronounced knee, ankle and metatarsophalangeal flexion when approaching and clearing the obstacle. Despite the overall time course kinematic patterns about the hip, knee, ankle, and metatarsophalangeal were identical, we found significant differences between values of the 2D and 3D joint angular motion. Our results showed that the most apparent changes that occurred during the gait cycle were for the ankle (2D-measured STANCEmax: 157±2.4 degrees vs. 3D-measured STANCEmax: 151±1.2 degrees; P<.05) and metatarsophalangeal joints (2D-measured STANCEmin: 151±2.2 degrees vs. 3D-measured STANCEmin: 162 ± 2.2 degrees; P<.01 and 2D-measured TO: 163±4.9 degrees vs. 3D-measured TO: 177±1.4 degrees; P<.05), whereas the hip and knee joints were much less affected. Data and techniques described here are useful for an objective assessment of altered gait after CP injury and repairin an ovine model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.