Red blood cells infected with Plasmodium falciparum (iRBCs) have been shown to modulate maturation of human monocyte-derived dendritic cells (DCs), interfering with their ability to activate T cells. Interaction between Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and CD36 expressed by DCs is the proposed mechanism, but we show here that DC modulation does not require CD36 binding, PfEMP1, or contact between DCs and infected RBCs and depends on the iRBC dose. iRBCs expressing a PfEMP1 variant that binds chondroitin sulfate A (CSA) but not CD36 were phagocytosed, inhibited lipopolysaccharide (LPS)-induced phenotypic maturation and cytokine secretion, and abrogated the ability of DCs to stimulate allogeneic T-cell proliferation. CD36-and CSA-binding iRBCs showed comparable inhibition. P. falciparum lines rendered deficient in PfEMP1 expression by targeted gene knockout or knockdown also inhibited LPS-induced phenotypic maturation, and separation of DCs and iRBCs in transwells showed that inhibition was not contact dependent. Inhibition was observed at an iRBC:DC ratio of 100:1 but not at a ratio of 10:1. High doses of iRBCs were associated with apoptosis of DCs, which was not activation induced. Lower doses of iRBCs stimulated DC maturation sufficient to activate autologous T-cell proliferation. In conclusion, modulation of DC maturation by P. falciparum is dose dependent and does not require interaction between PfEMP1 and CD36. Inhibition and apoptosis of DCs by high-dose iRBCs may or may not be physiological. However, our observation that low-dose iRBCs initiate functional DC maturation warrants reevaluation and further investigation of DC interactions with blood-stage P. falciparum.Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both innate and adaptive immune responses and play a critical role in the initiation of primary T-cell responses. To function effectively as antigen-presenting cells, they undergo a process of maturation, characterized by increased expression of costimulator, major histocompatibility complex and adhesion molecules, and secretion of proinflammatory cytokines (reviewed in reference 35). DC maturation is usually activated by pathogens through ligation of pattern recognition receptors, such as Toll-like receptors, but may also be initiated by inflammatory cytokines and endogenous signals of cellular damage (reviewed in references 29 and 34).It has been suggested that modulation of DC function by the malaria parasite Plasmodium falciparum contributes to both the delayed acquisition of antimalarial immunity as well as immunosuppression associated with acute malaria infection. Urban et al. (50,52) showed that red blood cells infected with P. falciparum (iRBCs) at 100 iRBCs per DC inhibit maturation of human monocyte-derived DCs and interfere with their ability to activate T-cell responses. Interaction between the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on the surfaces of iRBCs, and the DC scavenger receptor...
Background In pregnancy associated malaria (PAM), Plasmodium falciparum infected erythrocytes (IEs) express variant surface antigens (VSA-PAM) that evade existing immunity and mediate placental sequestration. Antibodies to VSA-PAM develop with gravidity and block placental adhesion or opsonise IEs for phagocytic clearance, protecting women from anemia and low birth weight Methods and findings Using sera from 141 parasitemic pregnant Malawian women enrolled in a randomized trial of antimalarials and VSA-PAM-expressing CS2 IEs, we quantitated levels of IgG to VSA-PAM by flow cytometry and opsonizing antibodies by measuring uptake of IEs by THP1 promonocytes. After controlling for gravidity and antimalarial treatment, IgG against VSA-PAM was associated with decreased anemia at delivery (OR=0.66, 95% confidence interval [CI] 0.46, 0.93; P=0.018) and weakly associated with decreased parasitological failure (OR=0.78; 95% CI, 0.60, 1.03; P=0.075), especially re-infection (OR=0.73; CI, 0.53,1.01; P=0.057). Opsonizing antibodies to CS2 IE were associated with less maternal anemia. (OR=0.31, 95% CI, 0.13, 0.74; P=0.008) and treatment failure (OR=0.48; 95% CI, 0.25, 0.90; P=0.023), primarily due to recrudescent infection (OR=0.49; 95% CI, 0.21, 1.12; P=0.089). Conclusion Both IgG antibody to VSA-PAM and opsonizing antibody, a functional measure of immunity correlate with parasite clearance and less anemia in pregnancy malaria.
Human immunodeficiency virus type 1 (HIV-1) coinfection decreases antibodies to variant surface antigens implicated in pregnancy-associated malaria (VSA-PAM) caused by Plasmodium falciparum. The effect of HIV-1 on antibody functions that may protect mothers from pregnancy-associated malaria is unknown. Sera from multigravid pregnant women with malaria and HIV-1 coinfection (n ؍ 58) or malaria alone (n ؍ 29) and from HIV-1-infected (n ؍ 102) or -uninfected (n ؍ 54) multigravidae without malaria were analyzed for anti-VSA-PAM antibodies by flow cytometry, the ability to inhibit adhesion to chondroitin sulfate A, or to opsonize CS2-infected erythrocytes for phagocytosis by THP-1 cells. In women with malaria, anti-VSA-PAM levels correlated better with opsonic activity (r ؍ 0.60) than with adhesion-blocking activity (r ؍ 0.33). In univariate analysis, HIV-1 coinfection was associated with lower opsonic activity but not adhesion-blocking activity or anti-VSA-PAM levels. Malaria-infected women with anemia (hemoglobin levels of <11.0 g/dl) had lower opsonic activity than nonanemic women (P ؍ 0.007) independent of HIV-1 status. By multivariate analysis, in malaria-infected women, anemia (but not HIV status) was associated with opsonic activity. In women without malaria, opsonic activity was not associated with either anemia or HIV-1 status. In multigravid pregnant women with malaria, impaired serum opsonic activity may contribute to anemia and possibly to the decreased immunity to pregnancy-associated malaria associated with HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.