Abstract-The accumulation of four polycyclic aromatic hydrocarbons ([PAHs]; phenanthrene, pyrene, fluoranthene, and benzo[a]pyrene) was tested in the earthworm Eisenia andrei in a spiked artificial soil medium. A typical peak in the body residues was observed for all PAHs around day 7, which could not be explained from changes in the total soil concentration. It is argued that the most likely cause of this peak is a decrease in the concentration in pore water, the main bioavailable phase for earthworms. This decrease is caused by biodegradation while the low rate of mass transfer from the solid state precludes replenishment. To describe the data, bioavailability was assumed to decline exponentially in time, but the shape of the accumulation curves suggests a more abrupt change. Estimates of the uptake rate (k 1 ) are similar for all PAHs when expressed on soil solution basis (approximately 2,000 L/kg/d); the elimination rate (k 2 ) shows a decrease with K ow as expected, but the values tend to be slightly lower than literature data. The dynamic bioconcentration factors (k 1 /k 2 ) agree well with an equilibrium partitioning between soil water and the phases inside the organism.
The accumulation of four polycyclic aromatic hydrocarbons ([PAHs]; phenanthrene, pyrene, fluoranthene, and ben‐zo[a]pyrene) was tested in the earthworm Eisenia andrei in a spiked artificial soil medium. A typical peak in the body residues was observed for all PAHs around day 7, which could not be explained from changes in the total soil concentration. It is argued that the most likely cause of this peak is a decrease in the concentration in pore water, the main bioavailable phase for earthworms. This decrease is caused by biodegradation while the low rate of mass transfer from the solid state precludes replenishment. To describe the data, bioavailability was assumed to decline exponentially in time, but the shape of the accumulation curves suggests a more abrupt change. Estimates of the uptake rate (k1) are similar for all PAHs when expressed on soil solution basis (approximately 2,000 L/kg/d); the elimination rate (k2) shows a decrease with Kow as expected, but the values tend to be slightly lower than literature data. The dynamic bioconcentration factors (k1/k2) agree well with an equilibrium partitioning between soil water and the phases inside the organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.