Heat transfer processes using two-phase boiling flows are often found in the industry, due to the high-efficiency heat removal, with a minimum difference of temperature between the heated surface and fluid. Moreover, the use of computational fluid dynamics to solve safety issues related to nuclear reactors has increased rapidly, but a complete validation is still being carried out. Therefore, this study aims the assessment of different sub-models of the interfacial heat transfer coefficient which is used as a closure relation in the two-fluid multiphase model. As a manner to validate the numerical results, the set of experimental conditions of Bartolomei and Chanturiya (Therm Eng 14:123-128, 1967) were applied to an upwards flow in a circular channel, under high water saturation pressures. The interfacial sub-models were implemented into an axisymmetric simulation domain, using the Eulerian two-fluid approach. Three different saturation pressures and two uniform heat fluxes were considered in the simulation runs. Fixed mass flux and subcooled degree of 900 kg/m 2 and 60 K were applied, respectively. A satisfactory agreement was achieved for the estimation of the heated wall temperature, the liquid bulk temperature and the onset of saturated boiling. Different heat transfer closure relations promoted different vapor volume fraction along the channel, indicating the importance of an adequate interfacial heat transfer correlation to predict the flow boiling phenomena.
This sensitivity analysis of the momentum and turbulence equations uses the Eulerian two-phase approach and intends to achieve a validated modeling for subcooled boiling flows. The studied regime is relevant to many industry applications and to the critical heat flux phenomenon, an important process for design and safety analyses of water-cooled nuclear power plants. Ascending water flows in heated circular pipes are modeled under subcooled boiling condition and applying a combination of computational multi-fluid dynamics (CMFD) models, each one for the estimation of specific terms of the governing equations. Turbulence closure, drag, lift, turbulent interaction, turbulent dispersion, wall lubrication and interfacial area models are investigated through variations around a reference model set defined based on the literature review, changing each model one at a time to study their impacts on the simulation results. Key parameters, such as void fraction and temperature profiles, are chosen for the evaluation of the results. Despite the difficulty of tracking the contributions of simultaneously applied models, the Legendre-Magnaudet lift force and the Burns et al. turbulent dispersion force models show good agreement with the experimental data of a flow at 4.5 MPa used for the quality verification of the simulations. These models are also applied for flows with pressures ranging from 1.5 to 15 MPa, and they lead to promising results. This study gives interesting insights on the influence of the distinct models composing momentum and turbulence calculations, contributing to the validation effort of the CMFD approach for subcooled boiling flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.