Smart buildings are equipped with sensors that allow monitoring a range of building systems including heating and air conditioning, lighting and the general electric energy consumption. Thees data can then be stored and analyzed. The ability to use historical data regarding electric energy consumption could allow improving the energy efficiency of such buildings, as well as help to spot problems related to wasting of energy. This problem is even more important when considering that buildings are some of the largest consumers of energy. In this paper, we are interested in forecasting the energy consumption of smart buildings, and, to this aim, we propose a comparative study of different forecasting strategies that can be used to this aim. To do this, we used the data regarding the electric consumption registered by thirteen buildings located in a university campus in the south of Spain. The empirical comparison of the selected methods on the different data showed that some methods are more suitable than others for this kind of problem. In particular, we show that strategies based on Machine Learning approaches seem to be more suitable for this task.
Nowadays, smart buildings can collect data regarding the electric energy consumption, which can then be analyzed to gain insights or to predict or identify abnormal energy consumption. Numerous models are applied to face this problem but they are based on a global point of view and cannot detect local patterns of abnormal consumption. This work lies in the former option, as we propose a way to analyze energy consumption data from smart buildings. In particular, we use energy consumption data collected by various buildings over a five-year period. These data were analyzed to gain insight into the functioning of the considered buildings, with the aim of detecting anomalous situations, which could indicate that some energy usage policy should be changed or that there is a fault in the sensor network. In particular, we propose an approach based on biclustering, which allows obtaining subgroups of buildings that show a similar behaviour over a specific period of time. To the best of our knowledge, this is the first application of biclustering to energy consumption data analysis. Results confirm that the proposed approach can help policy makers in detecting irregular situations, which can provide hints on how to improve the efficiency of buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.