The functional principal components analysis (PCA) involves new considerations on the mechanism of measuring distances (the norm). Some properties arising in functional framework (e.g., smoothing) could be taken into account through an inner product in the data space. But this proposed inner product could make, for example, interpretational or (and) computational abilities worse. The results obtained in this paper establish equivalences between the PCA with the proposed inner product and certain PCA with a given well-suited inner product. These results have been proved in the theoretical framework given by Hilbert valued random variables, in which multivariate and functional PCAs appear jointly as particular cases.
Academic PressAMS classification numbers: 60G12, 46C05, 47B40, 46A35.
The following result in the theory of numerical ranges in Banach algebras is well known (see [3, Theorem 12.2]). The numerical range of an element F in the bidual of a unital Banach algebra A is the closure of the set of values at F of the w*-continuous states of . As a consequence of the results in this paper the following
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.