Erosion is a major problem on agricultural lands in Europe. Erosion measurement tools have traditionally been focused on delocalized quantification but without mapping the real places inside the basin where the erosion took effect. In this article, we use new space missions, such as Sentinel-1, and the opportunity they offer to obtain SAR (Synthetic Aperture Radar) images with high frequency, resolution, range, and, above all, availability to enable the application of techniques, like differential interferometry, in new fields. We propose to measure ground deformation caused by water and tillage erosion in small agricultural basins using TopSAR (Terrain Observation with Progressive Scans SAR, Synthetic Aperture Radar) images acquired by the Sentinel-1 mission, after previously verifying the accuracy of these measurements through comparison with measurements from a LIDAR (Light Detection and Ranging) system. The results of this work confirm the potential of monitoring erosion in agricultural basins with differential interferometry over Sentinel-1 TopSAR images. Its capabilities have been successfully tested in different conditions related to agricultural tasks without precipitation or storm events. This technique makes it possible to study both water and tillage erosion and sedimentation processes and even to test the efficiency of anti-erosion measures in the field or to verify the results of different management practices over time.
Agricultural production, the main pillar of food security, is highly dependent on soil quality, and threatened by erosion processes that degrade soil quality. This article is part of a research to verify the usefulness of differential interferometric analysis on TopSAR (Terrain Observation with Progressive Scans SAR, Synthetic Aperture Radar) images to measure water and tillage erosion in small agricultural basins. For this, images from the Sentinel 1 mission are used, analyzing the deformations on the earth’s surface. The purpose of this research is to verify the accuracy of the proposed method by comparing its measures with the ones taken with the gold standard laser terrestrial LIDAR (Light Detection and Ranging) system, as well as to establish a basic step period framework that guarantees an admissible loss of coherence. The results on a pilot plot in El Molar (north of Madrid, Spain) showed that the differences lay within the range of the error associated with the very LIDAR system and showed that coherence losses correspond with the deformations measured. Given the economic and labor advantages of the differential interferometric analysis, this method could be regarded as an excellent alternative to the use of LIDAR in large-scale studies for measuring ground deformation caused by water and tillage erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.