Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca2+ channel; Slo3, a K+ channel; the sperm-specific Na+/H+ exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.
Background
CatSper is a sperm-specific calcium ion (Ca
2+
) channel, which regulates sperm flagellar beating by tuning cytoplasmic Ca
2+
concentrations. Although this Ca
2+
channel is essential for mammalian fertilization, recent bioinformatics analyses have revealed that genes encoding CatSper are heterogeneously distributed throughout the eukaryotes, including vertebrates. As this channel is activated by cytoplasmic alkalization in mammals and sea urchins, it has been proposed that the sperm-specific Na
+
/H
+
exchanger (sNHE, a product of the
SLC9C
gene family) positively regulates its activity. In mouse, sNHE is functionally coupled to soluble adenylyl cyclase (sAC). CatSper, sNHE, and sAC have thus been considered functionally interconnected in the control of sperm motility, at least in mouse and sea urchin.
Results
We carried out a comparative genomic analysis to explore phylogenetic relationships among CatSper, sNHE and sAC in eukaryotes. We found that sNHE occurs only in Metazoa, although sAC occurs widely across eukaryotes. In animals, we found correlated and restricted distribution patterns of the three proteins, suggesting coevolution among them in the Metazoa. Namely, nearly all species in which CatSper is conserved also preserve sNHE and sAC. In contrast, in species without sAC, neither CatSper nor sNHE is conserved. On the other hand, the distribution of another testis-specific NHE (NHA, a product of the
SLC9B
gene family) does not show any apparent association with that of CatSper.
Conclusions
Our results suggest that CatSper, sNHE and sAC form prototypical machinery that functions in regulating sperm flagellar beating in Metazoa. In non-metazoan species, CatSper may be regulated by other H
+
transporters, or its activity might be independent of cytoplasmic pH.
Electronic supplementary material
The online version of this article (10.1186/s40851-019-0141-3) contains supplementary material, which is available to authorized users.
The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs.
Fluorescence (or Frster) resonance energy transfer (FRET) is a straightforward and sensitive technique to evaluate molecular interactions. However, most of the popular FRET pairs suffer cross-excitation of the acceptor, which could lead to false positives. To overcome this problem, we selected a large Stokes shift (LSS) fluorophore as a FRET donor. As a successful example, we employed a new FRET pair mAmetrine (an LSS yellow fluorescence protein)/DY-547 (a cyanine derivative) to substitute CFP/fluorescein that we previously employed to study molecular interactions between cyclic nucleotide-binding domains and cyclic nucleotides. The new FRET pair is practically free of cross-excitation of the acceptor. Namely, a change in the fluorescence spectral shape implies evidence of FRET without other control experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.