Autonomous agents in videogames, usually called bots, have tried to behave as human players from their emergence more than 20 years ago. They normally try to model a part of a human expert player's knowledge with respect to the game, trying to become a competitive opponent or a good partner for other players. This paper presents a deep description of the design of a bot for playing 1 vs. 1 Death Match mode in the first person shooter Unreal Tournament™ 2004 (UT2K4). This bot uses a state-based Artificial Intelligence model which emulates a big part of the behavior/knowledge (actions and tricks) of an expert human player in this mode. This player has participated in international UT2K4 championships. The behavioral engine considers primary and secondary actions, and uses a memory approach. It is based in an auxiliary database for learning about the fighting arena, so it stores weapons and items locations once the bot has discovered them, as a human player would do. This so-called Expert Bot has yielded excellent results, beating the game default bots even in the hardest difficulty, and being a very hard opponent for medium-level human players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.