The present work uses a more accurate thermoelastic formulation than the classical equation, based on the inclusion of a higher order term, to analyze crack tip thermoelastic data. It is shown that this thermoelastic analysis (TSA) model can be fitted to the Christopher–James–Patterson crack tip field model and hence provides information on crack tip shielding. To validate the results of this analysis, stress intensity factors (SIFs) were compared with results obtained from digital image correlation (also fitted to the CJP model). A comparison was also made between these CJP‐derived SIF values and those obtained using a purely elastic Irwin–Westergaard approach. A high level of agreement was observed between DIC and TSA results in assessing ΔKCJP that is the net result of the driving and the shielding forces on the crack tip. The ability to assess shielding using TSA is a significant step forward in its potential use in a more accurate characterization of crack tip fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.