Landslides are considered a natural process, with hundreds of events occurring every year in many regions of the world. However, human activities can significantly affect how stable a slope or cliff is, increasing the chances of slope collapses. Moreover, agricultural irrigation has potential to saturate subsurface materials well below ground level and is known to be an important factor that can trigger landslides in many countries. A macroregional literature review of irrigation-induced landslides was developed in this investigation, considering what has been published in Chinese, English, and Spanish. A total of 115 peer-reviewed papers, books and book chapters, graduate and undergraduate theses, and government reports were found, including 82 case studies (23 in Chinese, 26 in English, and 33 in Spanish). Results from this analysis indicate that studies focusing on this important topic have increased exponentially since the 1960s, with most irrigation-induced landslides occurring in dry climates (precipitation less than 600 mm/year), with rainfall concentrated during summer months. The majority of studies have been done in the loess region of China (Asian region), followed by Peru (Latin American region), though cases were found from other macroregions (African, Indian, Russian, Angloamerican, and Indonesian). Based on this global review, new agricultural irrigation projects located in collapsible areas must include a landslide risk analysis. Cultivated areas can follow a series of measures to minimize the chances of triggering a landslide, which would put human lives, ecosystems, food production, and infrastructure at risk.
There is interest in using locally available, low cost organic materials to attenuate heavy metals such as Cd, Cr, Cu, Hg, Ni, Pb, and Zn found in surface waters in Peru and other developing regions. Here we mesh Spanish language publications, archived theses, and prior globally available literature to provide a tabulated synthesis of organic materials that hold promise for this application in the developing world. In total, nearly 200 materials were grouped into source categories such as algae and seashells, bacteria and fungi, terrestrial plant-derived materials, and other agricultural and processing materials. This curation was complemented by an assessment of removal potential that can serve as a resource for future studies. We also identified a subset of Peruvian materials that hold particular promise for further investigation, including seashell-based mixed media, fungal blends, lignocellulose-based substrates including sawdust, corn and rice husks, and food residuals including peels from potatoes and avocadoes. Many studies reported percent removal and/or lacked consistent protocols for solid to liquid ratios and defined aqueous concentrations, which limits direct application. However, they hold value as an initial screening methodology informed by local knowledge and insights that could enable adoption for agriculture and other non-potable water reuse applications. While underlying removal mechanisms were presumed to rely on sorptive processes, this should be confirmed in promising materials with subsequent experimentation to quantify active sites and capacities by generating sorption isotherms with a focus on environmental conditions and specific contaminated water properties (pH, temperature, ionic strength, etc.). These organics also hold promise for the pairing of sorption to indirect microbial respiratory processes such as biogenic sulfide complexation. Conversely, there is a need to quantify unwanted contaminant release that could include soluble organic matter and nutrients. In addition to local availability and treatment efficacy, social, technical, economic, and environmental applicability of those materials for large-scale application must be considered to further refine material selection.
Majes is one of the largest agricultural areas in the Arequipa region (southern Peru). Low seasonal precipitation and increasing water demands for agricultural irrigation, industry, and human consumption have made water supply projections a major concern. Agricultural development is becoming more extensive in this dry, sunny climate where crops can be grown year-round. However, because this type of project usually involves significant perturbations to the regional water cycle, understanding the effects of irrigation on local hydrology is crucial. Based on the watershed-scale Soil and Water Assessment Tool (SWAT), this investigation focuses on the impacts of intensive irrigation on hydrological responses in the Majes region. This study is unique because we allow for crop-field scale input within our regional-scale model to provide information at this smaller scale, which is important to inform local stakeholders and decision makers. Each hydrologic response unit (HRU) was generated to represent an individual crop field, so that management practices could be applied according to real-world scenarios. The management file of each HRU was modified to include different operation schedules for crop rotation, irrigation, harvest, and tillage. The model was calibrated and validated against monthly observed stream discharge during the 2009–2020 period. Additionally, evapotranspiration, irrigation water volume, and daily stream discharge downstream of the local river (Siguas) were used to verify the model performance. A total of 49 sub-basins and 4222 HRUs were created, with 3000 HRUs designated to represent individual crop fields. The simulation results revealed that infiltration from agricultural activities in Majes represents the majority of annual groundwater return flow, which makes a substantial contribution to streamflow downstream of the Siguas River. Simulations also suggested that groundwater flow processes and the interactions between surface and groundwater have a major impact on the water balance of the study area. Additionally, climate variability had a higher impact on surface runoff than on groundwater return flow, illustrating that the groundwater component in the study area is important for future water resources resiliency under expected climate change scenarios. Finally, there is a need to perform a follow-up implementation to provide a guideline for decision-makers to assess future sustainable water resources management under varying climatic conditions for this arid irrigated system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.