Heart failure with preserved ejection fraction (HFpEF) is a common, morbid, and mortal syndrome for which there are no evidence-based therapies. Here, we report that concomitant metabolic and hypertensive stress in mice elicited by a combination of high fat diet (HFD) and constitutive nitric oxide (NO) synthase inhibition by N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulates the numerous systemic and cardiovascular features of human HFpEF. One of the unfolded protein response (UPR) effectors, the spliced form of X-box binding protein 1 (Xbp1s), was reduced in the myocardium of both experimental and human HFpEF. Mechanistically, the decrease in Xbp1s resulted from increased inducible NO synthase (iNOS) activity and S-nitrosylation of endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective Xbp1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of Xbp1s, each ameliorated the HFpEF phenotype. We have unveiled iNOS-driven dysregulation of IRE1α-Xbp1s as a crucial mechanism of cardiomyocyte dysfunction in HFpEF.
These results suggest a crosstalk between pathways involving fast intracellular signaling and the AR to explain testosterone-induced skeletal muscle hypertrophy.
Rationale: Heart failure with preserved ejection fraction (HFpEF) is a mortal clinical syndrome without effective therapies. We recently demonstrated in mice that a combination of metabolic and hypertensive stress recapitulates key features of human HFpEF. Objective: Using this novel preclinical HFpEF model, we set out to define and manipulate metabolic dysregulations occurring in HFpEF myocardium. Methods and Results: We observed impairment in mitochondrial fatty acid oxidation associated with hyperacetylation of key enzymes in the pathway. Down-regulation of sirtuin 3 and deficiency of NAD+ secondary to an impaired NAD+ salvage pathway contribute to this mitochondrial protein hyperacetylation. Impaired expression of genes involved in NAD+ biosynthesis was confirmed in cardiac tissue from HFpEF patients. Supplementing HFpEF mice with nicotinamide riboside or a direct activator of NAD+ biosynthesis led to improvement in mitochondrial function and amelioration of the HFpEF phenotype. Conclusions: Collectively, these studies demonstrate that HFpEF is associated with myocardial mitochondrial dysfunction and unveil NAD+ repletion as a promising therapeutic approach in the syndrome.
BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling.
SummaryAn important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P 3 ]-dependent Ca 2+ signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P 3 production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P 3 was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 mM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-a1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 mM) and by the Cav1.1 agonist (-)SBayK 8644 (10 mM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.