The functionalization of silica-coated, magnetic Fe3O4 nanoparticles, with an ironcontaining ionic liquid, allows for the synthesis of a Fe3O4@SiO2@(mim) [FeCl4] system that can be employed as a magnetically recoverable nanocatalyst. Herein, we present the use of Fe3O4@SiO2@(mim) [FeCl4] for the glycolysis of PET into BHET under conventional heating. The catalyst achieved nearly 100% yield and selectivity over twelve consecutive reaction cycles at 180 °C and was efficiently recovered without tedious work-up or purification processes. Additional analyses revealed that the amount of catalyst lost after each cycle was negligible and no trace of Fe was found in the purified BHET product.
Magnetite nanoparticles (Fe3O4) functionalized with graphene oxide (GO) have been synthesized through a silanization process of the magnetic nanoparticles with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane and further coupling of GO. The synthesized nanomaterials have been characterized by several techniques, such as transmission electron microscopy (TEM), and infrared and Raman spectroscopy, which enabled the evaluation of the different steps of the functionalization process. The hybrid nanomaterial has been employed for the extraction of five benzophenones (benzophenone-1, benzophenone-3, 4-hydroxybenzophenone, benzophenone-6 and benzophenone-8) in aqueous samples by dispersive micro-solid phase extraction, combining the magnetic properties of magnetite nanoparticles with the excellent sorption capacity of graphene oxide via hydrophobic interactions with the analytes. The subsequent separation and quantification of the analytes was performed by liquid chromatography with tandem mass spectrometric detection, achieving limits of detection (LODs) in the range 2.5 to 8.2 μg·L−1, with relative standard deviations ranging from 1.3–9.8% and relative recovering in the range 86 to 105%. Positive swimming pool water samples analysed following the developed method revealed the presence of benzophenones in from 14.3 to 39 μg·L−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.