Allogeneic MSC therapy may be a valid alternative for the treatment of degenerative disc disease that is more logistically convenient than the autologous MSC treatment. The intervention is simple, does not require surgery, provides pain relief, and significantly improves disc quality.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
This pilot study showed that both techniques were safe and efficient for the osteoporotic VCF treatment. Radiological results indicate that the SpineJack® procedure has a higher potential for vertebral body height restoration and maintenance over time.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
This pilot monocenter study in 30 patients with painful osteoporotic vertebral compression fractures compared two vertebral augmentation procedures. Over a 3-year post-surgery follow-up, pain/disability/quality of life remained significantly improved with both balloon kyphoplasty and SpineJack® techniques, but the latter allowed better vertebral body height restoration/kyphosis correction. Introduction Patient follow-up rarely exceed 2 years in trials comparing vertebral augmentation procedures for the treatment of painful osteoporotic vertebral compression fractures (VCFs). This pilot, investigator-initiated, prospective study aimed to compare long-term results of SpineJack® (SJ) and balloon kyphoplasty (BKP). Preliminary results showed that SJ resulted in a better restoration of vertebral heights and angles, maintained over 12 months. Methods Thirty patients were randomized to SJ (n = 15) or BKP (n = 15). Clinical endpoints were analgesic consumption, back pain intensity (visual analog scale (VAS)), the Oswestry Disability Index (ODI), and quality of life (EQ-VAS score). They were recorded preoperatively, at 5 days (except EQ-VAS), 1, 3, 6, 12, and 36 months post-surgery. Spine X-rays were taken 48 h prior to the procedure and 5 days, 6, 12, and 36 months after. Results Clinical improvements were observed with both procedures over the 3-year period without significant inter-group differences, but the final mean EQ-5D index score was significantly in favor of the SJ group (0.93 ± 0.11 vs 0.81 ± 0.09; p = 0.007). Vertebral height restoration/kyphotic correction was still evident at 36 months with a greater mean correction of anterior (10 ± 13% vs 2 ± 8% for BKP, p = 0.007) and central height (10 ± 11% vs 3 ± 7% for BKP, p = 0.034) and a larger correction of the vertebral body angle (− 5.0°± 5.1°vs 0.4°± 3.4°; p = 0.003) for SJ group. Conclusions In this study, both techniques displayed very good long-term clinical efficiency and safety in patients with osteoporotic VCFs. Over the 3-year follow-up, vertebral body height restoration/kyphosis correction was better with the SpineJack® procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.