Podcasts have emerged as a massively consumed online content, notably due to wider accessibility of production means and scaled distribution through large streaming platforms. Categorization systems and information access technologies typically use topics as the primary way to organize or navigate podcast collections. However, annotating podcasts with topics is still quite problematic because the assigned editorial genres are broad, heterogeneous or misleading, or because of data challenges (e.g. short metadata text, noisy transcripts). Here, we assess the feasibility to discover relevant topics from podcast metadata, titles and descriptions, using topic modeling techniques for short text. We also propose a new strategy to leverage named entities (NEs), often present in podcast metadata, in a Non-negative Matrix Factorization (NMF) topic modeling framework. Our experiments on two existing datasets from Spotify and iTunes and Deezer, a new dataset from an online service providing a catalog of podcasts, show that our proposed document representation, NEiCE, leads to improved topic coherence over the baselines. We release the code for experimental reproducibility of the results 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.