Linear instability waves, or wavepackets, are key building blocks for the jet-noise problem. It has been shown in previous work that linear models correctly predict the evolution of axisymmetric wavepackets up to the end of the potential core of subsonic turbulent jets. Beyond this station, linear models fail, and nonlinearity is the likely missing piece. The essential underlying nonlinear mechanisms are unknown, and it remains unclear how these should be incorporated in a reduced-order model. The nonlinear interactions are considered in this work as an ‘external’ harmonic forcing added to the standard linear model. This modelling framework is explored using a locally parallel resolvent analysis to determine optimal forcing and associated responses, and a global approach based on 4D-Var data assimilation aimed at finding the optimal forcing of the parabolised stability equations that would minimise errors in the predictions of wavepackets. In all of the problems considered, the critical layer is found to be relevant: it is the position where sensitivity of wavepackets to nonlinearity is greatest. It is seen that disturbances are forced around the critical layer, and tilted by shear as they are advected, in a manner suggestive of an Orr-like mechanism. The ensemble of results suggests that critical-layer effects play a central role in the dynamics of wavepackets in subsonic turbulent jets, and that inclusion of such effects may remedy the shortcomings of linear reduced-order models.
The linear stability of high-Reynolds-number corrugated jets is investigated by solving the compressible Rayleigh equation linearized about the time-averaged flow field. A Floquet ansatz is used to account for periodicity of this base flow in the azimuthal direction. The origin of multiple unstable solutions, which are known to appear in these non-circular configurations, is traced through gradual perturbations of a parametrized base-flow profile. It is shown that all unstable modes are corrugated jet continuations of the classical Kelvin–Helmholtz modes of circular jets, highlighting that the same instability mechanism, modified by corrugations, leads to the growth of disturbances in such flows. It is found that under certain conditions the eigenvalues may form saddles in the complex plane and display axis switching in their eigenfunctions. A parametric study is also conducted to understand how penetration and number of corrugations impact stability. The effect of these geometric properties on growth rates and phase speeds of the multiple unstable modes is explored, and the results provide guidelines for the development of nozzle configurations that more effectively modify the Kelvin–Helmholtz instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.