Tabun (ethyl N,N-dimethylphosphoramidocyanidate), or GA, is a chemical warfare nerve agent produced during the World War II. The synthesis of its analogs is rather simple; thus, it is a significant threat. Furthermore, experiments with tabun and other nerve agents are greatly limited by the involved life risks and the severe restrictions imposed by the Chemical Weapons Convention. For these reasons, accurate theoretical assignment of fragmentation pathways can be especially important. In this work, we employ the Quantum Chemistry Electron Ionization Mass Spectra method, which combines molecular dynamics, quantum chemistry methods, and stochastic approaches, to accurately investigate the electron ionization/mass spectrometry (EI/MS) fragmentation spectrum and pathways of the tabun molecule. We found that different rearrangement reactions occur including a McLafferty involving the nitrile group. An essential and characteristic pathway for identification of tabun and analogs, a two-step fragmentation producing the m/z 70 ion, was confirmed. The present results will be also useful to predict EI/MS spectrum and fragmentation pathways of other members of the tabun family, namely, the O-alkyl/cycloalkyl N,N-dialkyl (methyl, ethyl, isopropyl, or propyl) phosphoramidocyanidates. K E Y W O R D Schemical defense, chemical warfare nerve agents, ethyl N,Ndimethylphosphoramidocyanidate, fragmentation pathways, GA, mass spectrometry, molecular dynamics, tabun
Novichok is one of the most feared and controversial nerve agents, which existence was confirmed only after the Salisbury attack in 2018. A new attack on August 2020, in Russia, was confirmed. After the 2018 attack, the agent was included in the list of the most dangerous chemicals of the Chemical Weapons Convention (CWC). However, information related to its electron ionization mass spectrometry (EI/MS), essential for unambiguous identification, is scarce. Therefore, investigations about Novichok EI/MS are urgent. In this work, we employed Born–Oppenheimer molecular dynamics through the Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method to simulate and rationalize the EI/MS spectra and fragmentation pathways of 32 Novichok molecules recently incorporated into the CWC. The comparison of additional simulations with the measured EI spectrum of another Novichok analog is very favorable. A general scheme of the fragmentation pathways derived from simulation results was presented. The present results will be useful for elucidation and prediction of the EI spectra and fragmentation pathways of the dangerous Novichok nerve agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.