Gravity can be formulated as a gauge theory by combining symmetry principles and geometrical methods in a consistent mathematical framework. The gauge approach to gravity leads directly to non-Euclidean, post-Riemannian spacetime geometries, providing the adequate formalism for metric-affine theories of gravity with curvature, torsion and non-metricity. In this paper, we analyze the structure of gauge theories of gravity and consider the relation between fundamental geometrical objects and symmetry principles as well as different spacetime paradigms. Special attention is given to Poincaré gauge theories of gravity, their field equations and Noether conserved currents, which are the sources of gravity. We then discuss several topics of the gauge approach to gravitational phenomena, namely, quadratic Poincaré gauge models, the Einstein-Cartan-Sciama-Kibble theory, the teleparallel equivalent of general relativity, quadratic metric-affine Lagrangians, non-Lorentzian connections, and the breaking of Lorentz invariance in the presence of non-metricity. We also highlight the probing of post-Riemannian geometries with test matter. Finally, we briefly discuss some perspectives regarding the role of both geometrical methods and symmetry principles towards unified field theories and a new spacetime paradigm, motivated from the gauge approach to gravity.
We analyse the quantum behaviour of the "Little Sibling" of the Big Rip singularity (LSBR) [1]. The quantisation is carried within the geometrodynamical approach given by the WheelerDeWitt (WDW) equation. The classical model is based on a Friedmann-Lemaître-RobertsonWalker Universe filled by a perfect fluid that can be mapped to a scalar field with phantom character. We analyse the WDW equation in two setups. In the first step, we consider the scale factor as the single degree of freedom, which from a classical perspective parametrises both the geometry and the matter content given by the perfect fluid. We then solve the WDW equation within a WKB approximation, for two factor ordering choices. On the second approach, we consider the WDW equation with two degrees of freedom: the scale factor and a scalar field. We solve the WDW equation, with the Laplace-Beltrami factor-ordering, using a Born-Oppenheimer approximation. In both approaches, we impose the DeWitt (DW) condition as a potential criterion for singularity avoidance. We conclude that in all the cases analysed the DW condition can be verified, which might be an indication that the LSBR can be avoided or smoothed in the quantum approach.Keywords: dark energy, future singularities, quantum cosmology * imanol@ubi.pt † mbl@ubi.pt (On leave of absence from UPV and IKERBASQUE.) ‡ ftoc@ubi.pt § pradomm@ucm.es 2
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We briefly review the foundations of electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations which introduce the spacetime metric. We then proceed with the tensor formulation by assuming local, linear, homogeneous and isotropic constitutive relations, and explore the physical, observable consequences of Maxwell's equations in curved spacetime. The field equations, charge conservation and the Lorentz force are explicitly expressed in general (pseudo) Riemanian manifolds. The generalized Gauss and Maxwell-Ampère laws, as well as the wave equations, reveal potentially interesting astrophysical applications. In all cases new electromagnetic couplings and related phenomena are induced by spacetime curvature. The implications and possible applications for gravity waves detection are briefly addressed. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.