The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites.
A detailed study of the corrosion phenomena of carbon steel has been investigated in this work by means of the comparison of field and laboratory tests. Two areas of the metropolitan area of Barcelona (Spain) were selected to carry out the field tests, whereas two different solutions of sodium chloride and sodium hydrogen sulfite were used to simulate the field conditions by means of cyclic laboratory tests. The corrosion rate has been evaluated from the weight loss of the specimens and the morphology surface has been visualized by optical and scanning electron microscopy. Corrosion products and contaminants have been analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy, respectively. The penetration results can be adjusted to the Passano equation and the corrosivity degree can be assigned in accordance with ISO standards.A correlation between field and laboratory tests has been found, by comparing the specimens with the same degree of corrosion, showing the validity of the accelerated laboratory tests in order to simulate the field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.