γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in adult central nervous system (CNS) synapses, but it excites immature CNS neurons as well as neurons in the myenteric plexus. The present work aimed to determine whether GABA-induced nonadrenergic, noncholinergic (NANC) neuronal-mediated relaxation of the rat duodenum is dependent on the activity of Na+ K+ Cl- cotransporters (NKCC) and requires calcium influx. In the presence of guanethidine (3 µmol/L), atropine (3 µmol/L), and indomethacin (1 µmol/L), relaxations induced by GABA (100 µmol/L), KCl (5–10 mmol/L) and electrical field stimulation (1–8 Hz, 2 ms, 60 V), but not those induced by bradykinin (10–100 nmol/L) were abolished by lidocaine (300 µmol/L). However, only GABA-induced relaxations were reduced in a concentration-dependent manner by the NKCC1/2 inhibitors bumetanide (0.1–1 µmol/L) and furosemide (1–10 µmol/L). GABA-induced NANC neuronal relaxation was abolished by bicuculline (30 µmol/L) and inhibited by N-nitroarginine methyl ester (l-NAME, 300 µmol/L). The ω-conotoxin GVIA (1 µmol/L), which acts exclusively on neuronal CaV2 channels, but not on smooth muscle voltage-gated Ca2+ CaV1 channels, and nonselective blockers of these channels (verapamil 100 nmol/L and ruthenium red 10 µmol/L), reduced GABA-induced relaxations. These results showed that the activation of GABAA receptors induces NANC nitrergic neuronal relaxations in the rat duodenum, which depend on NKCC activity and CaV2 channel activation, suggesting that this phenomenon results from neuronal depolarization promoted by Cl− efflux through GABAA receptors, with subsequent Ca2+ influx and nitric oxide release.
Aim: Both human and rat myometrium express stromal interaction molecule (STIM) and Orai/transient receptor potential canonical (TRPC) proteins, which are components of plasma membrane Ca 2+ store-operated channels. There are reports that these proteins mediate agonist-induced Ca 2+ influx in cultured myometrial cells. In this study, we aimed to determine the effects of Pyr6, an Orai channel blocker, on different agonist-induced contractions in isolated segments of rat uterus. Main findings: In Ca 2+ -free Tyrode's solution, Pyr6 (3 μM) promoted a reduction in both the magnitude and frequency of Ca 2+ (1 mM)-induced uterine contractions after the addition of carbachol (CCh, 100 μM), but not after the addition of oxytocin (OT, 150 nM). In Ca 2+ (0.18 mM)-Tyrode's solution, Pyr6 completely relaxed uterine contractions induced by both CCh and cloprostenol (300 nM), but not those induced by either KCI (40-80 mM) or OT. The addition of Pyr6 abolished the oscillatory uterine contractions induced by Ca 2+ after the addition of cyclopiazonic acid (CPA, 10 μM). When pre-incubated (5 min), Pyr6 reduced the magnitude of both CCh-induced phasic and tonic contractions. The addition of Pyr2 (3 μM), an Orai and TRPC channel blocker, abolished uterine contractions induced by CCh or OT. Conclusion: Considering Pyr6 as an Orai channel blocker and its inhibitory effect on uterine contractions induced by CCh, CPA, and cloprostenol, we suggest that Orai channels are required for the maintenance of contractions induced by these agonists in rat uterus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.