The greatest challenge the world is facing today is to win the battle against COVID-19 pandemic as soon as possible. Until a vaccine is available, personal protection, social distancing, and disinfection are the main tools against SARS-CoV-2. Although it is quite infectious, the SARS-CoV-2 virus itself is an enveloped virus that is relatively fragile because its protective fatty layer is sensitive to heat, ultraviolet radiation, and certain chemicals. However, heat and liquid treatments can damage some materials, and ultraviolet light is not efficient in shaded areas, so other disinfection alternatives are required to allow safe re-utilization of materials and spaces. As of this writing, evidences are still accumulating for the use of ozone gas as a disinfectant for sanitary materials and ambient disinfection in indoor areas. This paper reviews the most relevant results of virus disinfection by the application of gaseous ozone. The review covers disinfection treatments of both air and surfaces carried out in different volumes, which varies from small boxes and controlled chambers to larger rooms, as a base to develop future ozone protocols against COVID-19. Published papers have been critically analyzed to evaluate trends in the required ozone dosages, as a function of relative humidity (RH), contact time, and viral strains. The data have been classified depending on the disinfection objective and the volume and type of the experimental set-up. Based on these data, conservative dosages and times to inactivate the SARS-CoV-2 are estimated. In small chambers, 10–20 mg ozone/m3 over 10 to 50 min can be sufficient to significantly reduce the virus load of personal protection equipment. In large rooms, 30 to 50 mg ozone/m3 would be required for treatments of 20–30 min. Maximum antiviral activity of ozone is achieved at high humidity, while the same ozone concentrations under low RH could result inefficient. At these ozone levels, safety protocols must be strictly followed. These data can be used for reducing significantly the viral load although for assuring a safe disinfection, the effective dosages under different conditions need to be confirmed with experimental data.
Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis of this work is that hydrophobization can be used to improve their ability as adsorbents. Therefore, hydrophobic CNF was applied to adsorb hexavalent chromium from wastewater. CNF was synthetized by TEMPO-mediated oxidation, followed by mechanical disintegration. Hydrophobization was performed using methyl trimetoxysilane (MTMS) as a hydrophobic coating agent. The adsorption treatment of hexavalent chromium with hydrophobic CNF was optimized by studying the influence of contact time, MTMS dosage (0–3 mmol·g−1 CNF), initial pH of the wastewater (3–9), initial chromium concentration (0.10–50 mg·L−1), and adsorbent dosage (250–1000 mg CNF·L−1). Furthermore, the corresponding adsorption mechanism was identified. Complete adsorption of hexavalent chromium was achieved with CNF hydrophobized with 1.5 mmol MTMS·g−1 CNF with the faster adsorption kinetic, which proved the initial hypothesis that hydrophobic CNF improves the adsorption capacity of hydrophilic CNF. The optimal adsorption conditions were pH 3 and the adsorbent dosage was over 500 mg·L−1. The maximum removal was found for the initial concentrations of hexavalent chromium below 1 mg·L−1 and a maximum adsorption capacity of 70.38 mg·g−1 was achieved. The kinetic study revealed that pseudo-second order kinetics was the best fitting model at a low concentration while the intraparticle diffusion model fit better for higher concentrations, describing a multi-step mechanism of hexavalent chromium onto the adsorbent surface. The Freundlich isotherm was the best adjustment model.
Cationic cellulose nanocrystals (CCNC) are lignocellulosic bio-nanomaterials that present large, specific areas rich with active surface cationic groups. This study shows the adsorption removal of hexavalent chromium (Cr(VI)) from industrial wastewaters by the CCNC. The CCNC were synthetized through periodate oxidation and Girard’s reagent-T cationization. The high value of CCNCs cationic groups and anionic demand reveal probable nanocrystal-Cr(VI) attraction. Adsorption was performed with synthetic Cr(VI) water at different pH, dosage, Cr(VI) concentration and temperature. Fast removal of Cr(VI) was found while operating at pH 3 and 100 mg·L−1 of dosage. Nevertheless, a first slower complete removal of chromium was achieved by a lower CCNC dosage (40 mg·L−1). Cr(VI) was fully converted by CCNC into less-toxic trivalent species, kept mainly attached to the material surface. The maximum adsorption capacity was 44 mg·g−1. Two mechanisms were found for low chromium concentrations (Pseudo-first and pseudo-second kinetic models and continuous growth multi-step intraparticle) and for high concentrations (Elovich model and sequential fast growth-plateau-slow growth intraparticle steps). The Sips model was the best-fitting isotherm. Isotherm thermodynamic analysis indicated a dominant physical sorption. The Arrhenius equation revealed an activation energy between physical and chemical adsorption. CCNC application at selected conditions in industrial wastewater achieved a legal discharge limit of 40 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.