Localized expression of genes in plants from T-DNAs delivered into plant cells by Agrobacterium tumefaciens is an important tool in plant research. The technique, known as agroinfiltration, provides fast, efficient ways to transiently express or silence a desired gene without resorting to the time-consuming, challenging stable transformation of the host, the use of less efficient means of delivery, such as bombardment, or the use of viral vectors, which multiply and spread within the host causing physiological alterations themselves. A drawback of the agroinfiltration technique is its temperature dependence: early studies have shown that temperatures above 29 °C are nonpermissive to tumour induction by the bacterium as a result of failure in pilus formation. However, research in plant sciences is interested in studying processes at these temperatures, above the 25 °C experimental standard, common to many host-environment and host-pathogen interactions in nature, and agroinfiltration is an excellent tool for this purpose. Here, we measured the efficiency of agroinfiltration for the expression of reporter genes in plants from T-DNAs at the nonpermissive temperature of 30 °C, either transiently or as part of viral amplicons, and envisaged procedures that allow and optimize its use for gene expression at this temperature. We applied this technical advance to assess the performance at 30 °C of two viral suppressors of silencing in agropatch assays [Potato virus Y helper component proteinase (HCPro) and Cucumber mosaic virus 2b protein] and, within the context of infection by a Potato virus X (PVX) vector, also assessed indirectly their effect on the overall response of the host Nicotiana benthamiana to the virus.
SUMMARYMicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two classes of abundant 21-24 nucleotide small RNAs (smRNAs) that control gene expression in plants, mainly by guiding cleavage and degradation of target transcripts. Target identification based on predictive algorithms for base-paired complementarity requires further experimental validation and often fails to recognize miRNA::target pairs that escape from stringent complementarity rules. Here, we report on a microarray-based methodology to identify target mRNAs of miRNAs and siRNAs at a genomic scale. This strategy takes advantage of the RNA ligase-mediated amplification of 5¢ cDNA ends (RLM-RACE) to isolate miRNA or siRNA cleavage products from biological samples. Cleaved transcripts are then subjected to T7 RNA polymerase-mediated amplification and microarray hybridizations. The use of suitable hybridization controls is what makes our strategy outperform previous analyses. We applied this method and identified more than 100 putative novel miRNA or siRNA target mRNAs that had not been previously predicted by computational or microarray-based methods. Our data expand the regulatory role of endogenous smRNAs to a wide range of cellular processes, with prevalence in the regulation of cellular solute homeostasis. The methodology described here is straightforward, avoids extensive computational analysis and allows simultaneous analyses of several biological replicates, thus reducing the biological variability inherent in genomic analysis. The application of this simple methodology offers a framework for systematic analysis of smRNA-guided cleaved transcriptomes in different plant tissues, genotypes or stress conditions, and should contribute to understanding of the physiological role of smRNAs in plants.
The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of 16°C to 32°C. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at 20°C to 5.7 days at 28°C. The estimated lower thermal threshold was 15.6°C and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.
Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.
Summary Previous studies have found a correlation between the abilities of PVX vector‐expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21–22 nucleotides (nt) containing 5′‐terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor‐competent or suppressor‐deficient HCPro variants, expressed from either T‐DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor‐competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21–22 nt for those with 5′‐terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5′‐terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.