Cetacean-habitat modeling, although still in the early stages of development, represents a potentially powerful tool for predicting cetacean distributions and understanding the ecological processes determining these distributions. Marine ecosystems vary temporally on diel to decadal scales and spatially on scales from several meters to 1000s of kilometers. Many cetacean species are wideranging and respond to this variability by changes in distribution patterns. Cetacean-habitat models have already been used to incorporate this variability into management applications, including improvement of abundance estimates, development of marine protected areas, and understanding cetacean-fisheries interactions. We present a review of the development of cetacean-habitat models, organized according to the primary steps involved in the modeling process. Topics covered include purposes for which cetacean-habitat models are developed, scale issues in marine ecosystems, cetacean and habitat data collection, descriptive and statistical modeling techniques, model selection, and model evaluation. To date, descriptive statistical techniques have been used to explore cetacean-habitat relationships for selected species in specific areas; the numbers of species and geographic areas examined using computationally intensive statistic modeling techniques are considerably less, and the development of models to test specific hypotheses about the ecological processes determining cetacean distributions has just begun. Future directions in cetacean-habitat modeling span a wide range of possibilities, from development of basic modeling techniques to addressing important ecological questions.
Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. Fishery science grew up during the last century by integrating knowledge from oceanography, fish biology, marine ecology, and fish population dynamics, largely focused on the great Northern Hemisphere fisheries. During this period, understanding and explaining interannual fish recruitment variability became a major focus for fisheries oceanographers. Yet, the close link between climate and fisheries is best illustrated by the effect of “unexpected” events—that is, nonseasonal, and sometimes catastrophic—on fish exploitation, such as those associated with the El Niño–Southern Oscillation (ENSO). The observation that fish populations fluctuate at decadal time scales and show patterns of synchrony while being geographically separated drew attention to oceanographic processes driven by low-frequency signals, as reflected by indices tracking large-scale climate patterns such as the Pacific decadal oscillation (PDO) and the North Atlantic Oscillation (NAO). This low-frequency variability was first observed in catch fluctuations of small pelagic fish (anchovies and sardines), but similar effects soon emerged for larger fish such as salmon, various groundfish species, and some tuna species. Today, the availability of long time series of observations combined with major scientific advances in sampling and modeling the oceans’ ecosystems allows fisheries science to investigate processes generating variability in abundance, distribution, and dynamics of fish species at daily, decadal, and even centennial scales. These studies are central to the research program of Global Ocean Ecosystems Dynamics (GLOBEC). This review presents examples of relationships between climate variability and fisheries at these different time scales for species covering various marine ecosystems ranging from equatorial to subarctic regions. Some of the known mechanisms linking climate variability and exploited fish populations are described, as well as some leading hypotheses, and their implications for their management and for the modeling of their dynamics. It is concluded with recommendations for collaborative work between climatologists, oceanographers, and fisheries scientists to resolve some of the outstanding problems in the development of sustainable fisheries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.