While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
Fish provides more than 4.5 billion people with at least 15 % of their average per capita intake of animal protein.Fish's unique nutritional properties make it also essential to the health of billions of consumers in both developed and developing countries. Fish is one of the most efficient converters of feed into high quality food and its carbon footprint is lower compared to other animal production systems. Through fish-related activities (fisheries and aquaculture but also processing and trading), fish contribute substantially to the income and therefore to the indirect food security of more than 10 % of the world population, essentially in developing and emergent countries. Yet, limited attention has been given so far to fish as a key element in food security and nutrition strategies at national level and in wider development discussions and interventions. As a result, the tremendous potential for improving food security and nutrition embodied in the strengthening of the fishery and aquaculture sectors is missed. The purpose of this paper is to make a case for a closer integration of fish into the overall debate and future policy about food security and nutrition. For this, we review the evidence from the contemporary and emerging debates and controversies around fisheries and aquaculture and we discuss them in the light of the issues debated in the wider agriculture/farming literature. The overarching question that underlies this paper is: how and to what extent will fish be able to contribute to feeding 9 billion people in 2050 and beyond?
Barange et al. Impacts of climate change on marine ecosystem production in fisheries dependent societies
Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical–biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30–60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28–89%.
Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. Fishery science grew up during the last century by integrating knowledge from oceanography, fish biology, marine ecology, and fish population dynamics, largely focused on the great Northern Hemisphere fisheries. During this period, understanding and explaining interannual fish recruitment variability became a major focus for fisheries oceanographers. Yet, the close link between climate and fisheries is best illustrated by the effect of “unexpected” events—that is, nonseasonal, and sometimes catastrophic—on fish exploitation, such as those associated with the El Niño–Southern Oscillation (ENSO). The observation that fish populations fluctuate at decadal time scales and show patterns of synchrony while being geographically separated drew attention to oceanographic processes driven by low-frequency signals, as reflected by indices tracking large-scale climate patterns such as the Pacific decadal oscillation (PDO) and the North Atlantic Oscillation (NAO). This low-frequency variability was first observed in catch fluctuations of small pelagic fish (anchovies and sardines), but similar effects soon emerged for larger fish such as salmon, various groundfish species, and some tuna species. Today, the availability of long time series of observations combined with major scientific advances in sampling and modeling the oceans’ ecosystems allows fisheries science to investigate processes generating variability in abundance, distribution, and dynamics of fish species at daily, decadal, and even centennial scales. These studies are central to the research program of Global Ocean Ecosystems Dynamics (GLOBEC). This review presents examples of relationships between climate variability and fisheries at these different time scales for species covering various marine ecosystems ranging from equatorial to subarctic regions. Some of the known mechanisms linking climate variability and exploited fish populations are described, as well as some leading hypotheses, and their implications for their management and for the modeling of their dynamics. It is concluded with recommendations for collaborative work between climatologists, oceanographers, and fisheries scientists to resolve some of the outstanding problems in the development of sustainable fisheries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.